组织成像质谱中空间分析的超几何相似度量

C. Kaddi, R. M. Parry, May D. Wang
{"title":"组织成像质谱中空间分析的超几何相似度量","authors":"C. Kaddi, R. M. Parry, May D. Wang","doi":"10.1109/BIBM.2011.113","DOIUrl":null,"url":null,"abstract":"Tissue imaging mass spectrometry (TIMS) is a data-intensive technique for spatial biochemical analysis. TIMS contributes both molecular and spatial information to tissue analysis. We propose and evaluate a similarity measure, based on the hyper geometric distribution, for comparing m/z images from TIMS datasets, with the goal of identifying m/z values with similar spatial distributions. We compare the formulation and properties of the proposed method with those of other similarity measures, and examine the performance of each measure on synthetic and biological data. This study demonstrates that the proposed hyper geometric similarity measure is effective in identifying similar m/z images, and may be a useful addition to current methods in TIMS data analysis.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"14 1","pages":"604-607"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hypergeometric Similarity Measure for Spatial Analysis in Tissue Imaging Mass Spectrometry\",\"authors\":\"C. Kaddi, R. M. Parry, May D. Wang\",\"doi\":\"10.1109/BIBM.2011.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue imaging mass spectrometry (TIMS) is a data-intensive technique for spatial biochemical analysis. TIMS contributes both molecular and spatial information to tissue analysis. We propose and evaluate a similarity measure, based on the hyper geometric distribution, for comparing m/z images from TIMS datasets, with the goal of identifying m/z values with similar spatial distributions. We compare the formulation and properties of the proposed method with those of other similarity measures, and examine the performance of each measure on synthetic and biological data. This study demonstrates that the proposed hyper geometric similarity measure is effective in identifying similar m/z images, and may be a useful addition to current methods in TIMS data analysis.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"14 1\",\"pages\":\"604-607\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

组织成像质谱(TIMS)是一种数据密集型的空间生化分析技术。TIMS为组织分析提供了分子和空间信息。我们提出并评估了一种基于超几何分布的相似性度量,用于比较来自TIMS数据集的m/z图像,目的是识别具有相似空间分布的m/z值。我们比较了所提出的方法的公式和性质与那些其他相似性措施,并检查性能的每个措施在合成和生物数据。该研究表明,所提出的超几何相似性度量在识别相似的m/z图像方面是有效的,并且可能是对当前TIMS数据分析方法的有用补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergeometric Similarity Measure for Spatial Analysis in Tissue Imaging Mass Spectrometry
Tissue imaging mass spectrometry (TIMS) is a data-intensive technique for spatial biochemical analysis. TIMS contributes both molecular and spatial information to tissue analysis. We propose and evaluate a similarity measure, based on the hyper geometric distribution, for comparing m/z images from TIMS datasets, with the goal of identifying m/z values with similar spatial distributions. We compare the formulation and properties of the proposed method with those of other similarity measures, and examine the performance of each measure on synthetic and biological data. This study demonstrates that the proposed hyper geometric similarity measure is effective in identifying similar m/z images, and may be a useful addition to current methods in TIMS data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信