基于非线性共轭梯度法的最优增强算法

IF 0.3 Q4 MATHEMATICS, APPLIED
Jooyeon Choi, Bora Jeong, Yesom Park, Jiwon Seo, Chohong Min
{"title":"基于非线性共轭梯度法的最优增强算法","authors":"Jooyeon Choi, Bora Jeong, Yesom Park, Jiwon Seo, Chohong Min","doi":"10.12941/JKSIAM.2018.22.001","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"16 1","pages":"1-13"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD\",\"authors\":\"Jooyeon Choi, Bora Jeong, Yesom Park, Jiwon Seo, Chohong Min\",\"doi\":\"10.12941/JKSIAM.2018.22.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"16 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2018.22.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2018.22.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要boost是监督学习中最成功的算法之一,它搜索最精确的弱分类器加权和。该搜索对应于具有非负性和仿射约束的凸规划。本文提出了一种新的共轭梯度算法,该算法具有改进的Polak-Ribiera-Polyak共轭方向。证明了该算法的收敛性,并将其成功应用于boosting。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD
ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信