粗集料剥落对混凝土性能的影响

IF 0.5 4区 工程技术 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
Süleyman Karahan, H. Güneyli, Aslιhan Güneyli
{"title":"粗集料剥落对混凝土性能的影响","authors":"Süleyman Karahan, H. Güneyli, Aslιhan Güneyli","doi":"10.32047/cwb.2021.26.2.9","DOIUrl":null,"url":null,"abstract":"The effect of flakiness, one of the shape property of aggregate on concrete, is not an issue sufficiently clarified. In addition, there are no satisfactorily detailed limitations for flakiness on a global scale. This study, in which limestone was used as an aggregate, describes the dependence of flakiness on the concrete behaviour both in the fresh and hardened state. In this context, slump tests in the fresh state and compressive strength tests in the hardened state at 7, 28 and 60 days were carried out using concrete mixes prepared in the same design and with different fl akiness percentages. An increase of flaky particle fraction in coarse aggregate caused flocculation and segregation leading to the inhomogeneity of concrete mix. The slump of the mix decreased markedly as the flakiness increased, and an increase in flakiness by 25% resulted in an average reduction of 18 mm in the slump value. The test results indicated that the compressive strength of concrete decreased significantly with increasing flakiness. According to these negative linear relationships with strong correlation coefficients, an increase in the flaky coarse particles by 25% led to a decrease in compressive strength of average 0.9, 0.4 and 1.2 MPa for the curing times of 7, 28 and 60 days, respectively. Furthermore, the increase in flakiness enhanced particularly the range and standard deviation of compressive strength values with the same flakiness percentage, which this trend was most pronounced and meaningful at 60 days. This phenomenon exhibits that the differences and uncertainty in the compressive strength of the concrete specimens with the same flakiness percentage, increase distinctly with the increase in the flakiness.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of flakiness of coarse aggregate on concrete\",\"authors\":\"Süleyman Karahan, H. Güneyli, Aslιhan Güneyli\",\"doi\":\"10.32047/cwb.2021.26.2.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of flakiness, one of the shape property of aggregate on concrete, is not an issue sufficiently clarified. In addition, there are no satisfactorily detailed limitations for flakiness on a global scale. This study, in which limestone was used as an aggregate, describes the dependence of flakiness on the concrete behaviour both in the fresh and hardened state. In this context, slump tests in the fresh state and compressive strength tests in the hardened state at 7, 28 and 60 days were carried out using concrete mixes prepared in the same design and with different fl akiness percentages. An increase of flaky particle fraction in coarse aggregate caused flocculation and segregation leading to the inhomogeneity of concrete mix. The slump of the mix decreased markedly as the flakiness increased, and an increase in flakiness by 25% resulted in an average reduction of 18 mm in the slump value. The test results indicated that the compressive strength of concrete decreased significantly with increasing flakiness. According to these negative linear relationships with strong correlation coefficients, an increase in the flaky coarse particles by 25% led to a decrease in compressive strength of average 0.9, 0.4 and 1.2 MPa for the curing times of 7, 28 and 60 days, respectively. Furthermore, the increase in flakiness enhanced particularly the range and standard deviation of compressive strength values with the same flakiness percentage, which this trend was most pronounced and meaningful at 60 days. This phenomenon exhibits that the differences and uncertainty in the compressive strength of the concrete specimens with the same flakiness percentage, increase distinctly with the increase in the flakiness.\",\"PeriodicalId\":55632,\"journal\":{\"name\":\"Cement Wapno Beton\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement Wapno Beton\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32047/cwb.2021.26.2.9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2021.26.2.9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

薄片状是骨料的形状特性之一,对混凝土的影响尚未得到充分的阐明。此外,在全球范围内,没有令人满意的详细的薄片性限制。在这项研究中,石灰石被用作骨料,描述了在新状态和硬化状态下薄片对混凝土行为的依赖。在此背景下,采用相同设计、不同掺混率配制的混凝土进行了7、28、60天新鲜状态坍落度试验和硬化状态抗压强度试验。粗集料中片状颗粒掺量的增加会引起絮凝和离析,导致混凝土配合比的不均匀性。随着片状度的增加,掺合料的坍落度显著降低,片状度每增加25%,坍落度平均减小18 mm。试验结果表明,混凝土抗压强度随剥落度的增大而显著降低。在7、28和60 d的养护期内,片状粗颗粒每增加25%,其抗压强度平均分别降低0.9、0.4和1.2 MPa。剥落率的增加尤其增加了相同剥落率下的抗压强度值的范围和标准差,这种趋势在60 d时最为明显和有意义。这一现象说明,相同剥落率的混凝土试件抗压强度的差异和不确定性随着剥落率的增加而明显增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of flakiness of coarse aggregate on concrete
The effect of flakiness, one of the shape property of aggregate on concrete, is not an issue sufficiently clarified. In addition, there are no satisfactorily detailed limitations for flakiness on a global scale. This study, in which limestone was used as an aggregate, describes the dependence of flakiness on the concrete behaviour both in the fresh and hardened state. In this context, slump tests in the fresh state and compressive strength tests in the hardened state at 7, 28 and 60 days were carried out using concrete mixes prepared in the same design and with different fl akiness percentages. An increase of flaky particle fraction in coarse aggregate caused flocculation and segregation leading to the inhomogeneity of concrete mix. The slump of the mix decreased markedly as the flakiness increased, and an increase in flakiness by 25% resulted in an average reduction of 18 mm in the slump value. The test results indicated that the compressive strength of concrete decreased significantly with increasing flakiness. According to these negative linear relationships with strong correlation coefficients, an increase in the flaky coarse particles by 25% led to a decrease in compressive strength of average 0.9, 0.4 and 1.2 MPa for the curing times of 7, 28 and 60 days, respectively. Furthermore, the increase in flakiness enhanced particularly the range and standard deviation of compressive strength values with the same flakiness percentage, which this trend was most pronounced and meaningful at 60 days. This phenomenon exhibits that the differences and uncertainty in the compressive strength of the concrete specimens with the same flakiness percentage, increase distinctly with the increase in the flakiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement Wapno Beton
Cement Wapno Beton CONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信