单位球$B^N$中$\mathbb{R}^N$值和$\mathbb{S}^N$值Ginzburg-Landau涡解的局部极小性

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
R. Ignat, Luc Nguyen
{"title":"单位球$B^N$中$\\mathbb{R}^N$值和$\\mathbb{S}^N$值Ginzburg-Landau涡解的局部极小性","authors":"R. Ignat, Luc Nguyen","doi":"10.4171/aihpc/84","DOIUrl":null,"url":null,"abstract":"We study the existence, uniqueness and minimality of critical points of the form $m_{\\varepsilon,\\eta}(x) = (f_{\\varepsilon,\\eta}(|x|)\\frac{x}{|x|}, g_{\\varepsilon,\\eta}(|x|))$ of the functional \\[ E_{\\varepsilon,\\eta}[m] = \\int_{B^N} \\Big[\\frac{1}{2} |\\nabla m|^2 + \\frac{1}{2\\varepsilon^2} (1 - |m|^2)^2 + \\frac{1}{2\\eta^2} m_{N+1}^2\\Big]\\,dx \\] for $m=(m_1, \\dots, m_N, m_{N+1}) \\in H^1(B^N,\\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\\varepsilon$ and $\\eta$ for the existence of an escaping vortex solution $(f_{\\varepsilon,\\eta}, g_{\\varepsilon,\\eta})$ with $g_{\\varepsilon,\\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\\varepsilon>0$ and $N \\geq 2$. Similarly, when $\\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\\eta>0$ and $2 \\leq N \\leq 6$.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"35 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local minimality of $\\\\mathbb{R}^N$-valued and $\\\\mathbb{S}^N$-valued Ginzburg–Landau vortex solutions in the unit ball $B^N$\",\"authors\":\"R. Ignat, Luc Nguyen\",\"doi\":\"10.4171/aihpc/84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence, uniqueness and minimality of critical points of the form $m_{\\\\varepsilon,\\\\eta}(x) = (f_{\\\\varepsilon,\\\\eta}(|x|)\\\\frac{x}{|x|}, g_{\\\\varepsilon,\\\\eta}(|x|))$ of the functional \\\\[ E_{\\\\varepsilon,\\\\eta}[m] = \\\\int_{B^N} \\\\Big[\\\\frac{1}{2} |\\\\nabla m|^2 + \\\\frac{1}{2\\\\varepsilon^2} (1 - |m|^2)^2 + \\\\frac{1}{2\\\\eta^2} m_{N+1}^2\\\\Big]\\\\,dx \\\\] for $m=(m_1, \\\\dots, m_N, m_{N+1}) \\\\in H^1(B^N,\\\\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\\\\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\\\\varepsilon$ and $\\\\eta$ for the existence of an escaping vortex solution $(f_{\\\\varepsilon,\\\\eta}, g_{\\\\varepsilon,\\\\eta})$ with $g_{\\\\varepsilon,\\\\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\\\\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\\\\varepsilon>0$ and $N \\\\geq 2$. Similarly, when $\\\\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\\\\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\\\\eta>0$ and $2 \\\\leq N \\\\leq 6$.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/84\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/84","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了$\partial B^N$上含有$m(x) = (x,0)$的$m=(m_1, \dots, m_N, m_{N+1}) \in H^1(B^N,\mathbb{R}^{N+1})$型泛函\[ E_{\varepsilon,\eta}[m] = \int_{B^N} \Big[\frac{1}{2} |\nabla m|^2 + \frac{1}{2\varepsilon^2} (1 - |m|^2)^2 + \frac{1}{2\eta^2} m_{N+1}^2\Big]\,dx \]的形式$m_{\varepsilon,\eta}(x) = (f_{\varepsilon,\eta}(|x|)\frac{x}{|x|}, g_{\varepsilon,\eta}(|x|))$的临界点的存在性、唯一性和极小性。用$g_{\varepsilon,\eta}>0$建立了逃逸涡解$(f_{\varepsilon,\eta}, g_{\varepsilon,\eta})$存在的充分必要条件$N$和参数$\varepsilon$、$\eta$。我们还建立了它的独特性和局部最小。在极限情况$\eta = 0$下,我们证明了每一个$\varepsilon>0$和$N \geq 2$的Ginzburg-Landau (GL)能量的一次涡解的局部极小性。同样,当$\varepsilon = 0$时,我们证明了微磁学中对每个$\eta>0$和$2 \leq N \leq 6$产生的$\mathbb{S}^N$值GL模型的一级逃逸涡解的局部极小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local minimality of $\mathbb{R}^N$-valued and $\mathbb{S}^N$-valued Ginzburg–Landau vortex solutions in the unit ball $B^N$
We study the existence, uniqueness and minimality of critical points of the form $m_{\varepsilon,\eta}(x) = (f_{\varepsilon,\eta}(|x|)\frac{x}{|x|}, g_{\varepsilon,\eta}(|x|))$ of the functional \[ E_{\varepsilon,\eta}[m] = \int_{B^N} \Big[\frac{1}{2} |\nabla m|^2 + \frac{1}{2\varepsilon^2} (1 - |m|^2)^2 + \frac{1}{2\eta^2} m_{N+1}^2\Big]\,dx \] for $m=(m_1, \dots, m_N, m_{N+1}) \in H^1(B^N,\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\varepsilon$ and $\eta$ for the existence of an escaping vortex solution $(f_{\varepsilon,\eta}, g_{\varepsilon,\eta})$ with $g_{\varepsilon,\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\varepsilon>0$ and $N \geq 2$. Similarly, when $\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\eta>0$ and $2 \leq N \leq 6$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信