{"title":"单位球$B^N$中$\\mathbb{R}^N$值和$\\mathbb{S}^N$值Ginzburg-Landau涡解的局部极小性","authors":"R. Ignat, Luc Nguyen","doi":"10.4171/aihpc/84","DOIUrl":null,"url":null,"abstract":"We study the existence, uniqueness and minimality of critical points of the form $m_{\\varepsilon,\\eta}(x) = (f_{\\varepsilon,\\eta}(|x|)\\frac{x}{|x|}, g_{\\varepsilon,\\eta}(|x|))$ of the functional \\[ E_{\\varepsilon,\\eta}[m] = \\int_{B^N} \\Big[\\frac{1}{2} |\\nabla m|^2 + \\frac{1}{2\\varepsilon^2} (1 - |m|^2)^2 + \\frac{1}{2\\eta^2} m_{N+1}^2\\Big]\\,dx \\] for $m=(m_1, \\dots, m_N, m_{N+1}) \\in H^1(B^N,\\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\\varepsilon$ and $\\eta$ for the existence of an escaping vortex solution $(f_{\\varepsilon,\\eta}, g_{\\varepsilon,\\eta})$ with $g_{\\varepsilon,\\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\\varepsilon>0$ and $N \\geq 2$. Similarly, when $\\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\\eta>0$ and $2 \\leq N \\leq 6$.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"35 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local minimality of $\\\\mathbb{R}^N$-valued and $\\\\mathbb{S}^N$-valued Ginzburg–Landau vortex solutions in the unit ball $B^N$\",\"authors\":\"R. Ignat, Luc Nguyen\",\"doi\":\"10.4171/aihpc/84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence, uniqueness and minimality of critical points of the form $m_{\\\\varepsilon,\\\\eta}(x) = (f_{\\\\varepsilon,\\\\eta}(|x|)\\\\frac{x}{|x|}, g_{\\\\varepsilon,\\\\eta}(|x|))$ of the functional \\\\[ E_{\\\\varepsilon,\\\\eta}[m] = \\\\int_{B^N} \\\\Big[\\\\frac{1}{2} |\\\\nabla m|^2 + \\\\frac{1}{2\\\\varepsilon^2} (1 - |m|^2)^2 + \\\\frac{1}{2\\\\eta^2} m_{N+1}^2\\\\Big]\\\\,dx \\\\] for $m=(m_1, \\\\dots, m_N, m_{N+1}) \\\\in H^1(B^N,\\\\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\\\\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\\\\varepsilon$ and $\\\\eta$ for the existence of an escaping vortex solution $(f_{\\\\varepsilon,\\\\eta}, g_{\\\\varepsilon,\\\\eta})$ with $g_{\\\\varepsilon,\\\\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\\\\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\\\\varepsilon>0$ and $N \\\\geq 2$. Similarly, when $\\\\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\\\\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\\\\eta>0$ and $2 \\\\leq N \\\\leq 6$.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/84\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/84","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Local minimality of $\mathbb{R}^N$-valued and $\mathbb{S}^N$-valued Ginzburg–Landau vortex solutions in the unit ball $B^N$
We study the existence, uniqueness and minimality of critical points of the form $m_{\varepsilon,\eta}(x) = (f_{\varepsilon,\eta}(|x|)\frac{x}{|x|}, g_{\varepsilon,\eta}(|x|))$ of the functional \[ E_{\varepsilon,\eta}[m] = \int_{B^N} \Big[\frac{1}{2} |\nabla m|^2 + \frac{1}{2\varepsilon^2} (1 - |m|^2)^2 + \frac{1}{2\eta^2} m_{N+1}^2\Big]\,dx \] for $m=(m_1, \dots, m_N, m_{N+1}) \in H^1(B^N,\mathbb{R}^{N+1})$ with $m(x) = (x,0)$ on $\partial B^N$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\varepsilon$ and $\eta$ for the existence of an escaping vortex solution $(f_{\varepsilon,\eta}, g_{\varepsilon,\eta})$ with $g_{\varepsilon,\eta}>0$. We also establish its uniqueness and local minimality. In the limiting case $\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\varepsilon>0$ and $N \geq 2$. Similarly, when $\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\mathbb{S}^N$-valued GL model arising in micromagnetics for every $\eta>0$ and $2 \leq N \leq 6$.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.