侵袭性念珠菌病小鼠模型中宿主防御肽模拟物活性的体内成像

G. Diamond, L. Ryan, R. Parveen, A. Hise, K. Freeman, R. Scott
{"title":"侵袭性念珠菌病小鼠模型中宿主防御肽模拟物活性的体内成像","authors":"G. Diamond, L. Ryan, R. Parveen, A. Hise, K. Freeman, R. Scott","doi":"10.3390/ecmc-4-05628","DOIUrl":null,"url":null,"abstract":"Systemic fungal infections are increasingly common, especially in immune compromised patients. Even with newly developed drugs, there remain issues of limited spectrum, side effects, and the development of resistance. Host defense peptides (HDPs) have been examined recently for their utility as therapeutic antifungals, especially due to the low levels of resistance that develop. Unfortunately, the peptides exhibit poor pharmacologic properties in vivo. We have demonstrated the potent activity of nonpeptidic compounds that mimic HDPs in both structure and function against clinical strains of Candida albicans associated with oral and invasive candidiasis in mouse models. However, to test numerous compounds in vivo requires large numbers of mice, with multiple time points, and requires immunosuppression of the mice using cyclophosphamide, which can influence pharmacological parameters. We have identified a strain of mouse that develops invasive candidiasis without the need for immunosuppressive drugs. When we infect these mice with a strain of C. albicans that constitutively expresses Red Fluorescent Protein, we can quantify the infection in real time by in vivo imaging. We can further observe the reduction in fluorescence in infected mice after treatment with an HDP mimetic. Together our results demonstrate a novel in vivo method for screening new antifungal drugs.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo imaging of the activity of host defense peptide mimetics in a mouse model of invasive candidiasis\",\"authors\":\"G. Diamond, L. Ryan, R. Parveen, A. Hise, K. Freeman, R. Scott\",\"doi\":\"10.3390/ecmc-4-05628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systemic fungal infections are increasingly common, especially in immune compromised patients. Even with newly developed drugs, there remain issues of limited spectrum, side effects, and the development of resistance. Host defense peptides (HDPs) have been examined recently for their utility as therapeutic antifungals, especially due to the low levels of resistance that develop. Unfortunately, the peptides exhibit poor pharmacologic properties in vivo. We have demonstrated the potent activity of nonpeptidic compounds that mimic HDPs in both structure and function against clinical strains of Candida albicans associated with oral and invasive candidiasis in mouse models. However, to test numerous compounds in vivo requires large numbers of mice, with multiple time points, and requires immunosuppression of the mice using cyclophosphamide, which can influence pharmacological parameters. We have identified a strain of mouse that develops invasive candidiasis without the need for immunosuppressive drugs. When we infect these mice with a strain of C. albicans that constitutively expresses Red Fluorescent Protein, we can quantify the infection in real time by in vivo imaging. We can further observe the reduction in fluorescence in infected mice after treatment with an HDP mimetic. Together our results demonstrate a novel in vivo method for screening new antifungal drugs.\",\"PeriodicalId\":20450,\"journal\":{\"name\":\"Proceedings of 4th International Electronic Conference on Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 4th International Electronic Conference on Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecmc-4-05628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecmc-4-05628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

系统性真菌感染越来越常见,特别是在免疫功能低下的患者中。即使是新开发的药物,也存在频谱有限、副作用和耐药性发展的问题。宿主防御肽(hdp)作为治疗性抗真菌药物的效用最近得到了研究,特别是由于其产生的低水平耐药性。不幸的是,肽在体内表现出较差的药理学特性。我们已经在小鼠模型中证明了非肽类化合物在结构和功能上模仿HDPs对与口腔和侵袭性念珠菌病相关的白色念珠菌临床菌株的有效活性。然而,为了在体内测试大量化合物,需要大量的小鼠,多个时间点,并且需要使用环磷酰胺对小鼠进行免疫抑制,这可能会影响药理学参数。我们已经确定了一种不需要免疫抑制药物就能患上侵袭性念珠菌病的小鼠菌株。当我们用组成性表达红色荧光蛋白的白色念珠菌感染这些小鼠时,我们可以通过体内成像实时量化感染情况。我们可以进一步观察到感染小鼠用HDP模拟物治疗后荧光的减少。总之,我们的结果证明了一种新的体内方法筛选新的抗真菌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo imaging of the activity of host defense peptide mimetics in a mouse model of invasive candidiasis
Systemic fungal infections are increasingly common, especially in immune compromised patients. Even with newly developed drugs, there remain issues of limited spectrum, side effects, and the development of resistance. Host defense peptides (HDPs) have been examined recently for their utility as therapeutic antifungals, especially due to the low levels of resistance that develop. Unfortunately, the peptides exhibit poor pharmacologic properties in vivo. We have demonstrated the potent activity of nonpeptidic compounds that mimic HDPs in both structure and function against clinical strains of Candida albicans associated with oral and invasive candidiasis in mouse models. However, to test numerous compounds in vivo requires large numbers of mice, with multiple time points, and requires immunosuppression of the mice using cyclophosphamide, which can influence pharmacological parameters. We have identified a strain of mouse that develops invasive candidiasis without the need for immunosuppressive drugs. When we infect these mice with a strain of C. albicans that constitutively expresses Red Fluorescent Protein, we can quantify the infection in real time by in vivo imaging. We can further observe the reduction in fluorescence in infected mice after treatment with an HDP mimetic. Together our results demonstrate a novel in vivo method for screening new antifungal drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信