{"title":"1.2.1过渡金属/光催化剂双催化的一般原理","authors":"J. Tellis","doi":"10.1055/sos-sd-231-00086","DOIUrl":null,"url":null,"abstract":"The combination of transition-metal catalysis and visible-light photocatalysis offers opportunities for the development of unique new forms of reactivity. Presented in this chapter is an overview of the various strategies that can be used to design these dual catalytic transformations. Emphasis is placed on understanding the specific role that a photocatalyst can play in augmenting the reactivity of a substrate or cocatalyst to achieve otherwise challenging transformations.","PeriodicalId":11383,"journal":{"name":"Dual Catalysis in Organic Synthesis 1","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1.2.1 General Principles of Transition-Metal/Photocatalyst Dual Catalysis\",\"authors\":\"J. Tellis\",\"doi\":\"10.1055/sos-sd-231-00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of transition-metal catalysis and visible-light photocatalysis offers opportunities for the development of unique new forms of reactivity. Presented in this chapter is an overview of the various strategies that can be used to design these dual catalytic transformations. Emphasis is placed on understanding the specific role that a photocatalyst can play in augmenting the reactivity of a substrate or cocatalyst to achieve otherwise challenging transformations.\",\"PeriodicalId\":11383,\"journal\":{\"name\":\"Dual Catalysis in Organic Synthesis 1\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dual Catalysis in Organic Synthesis 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/sos-sd-231-00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dual Catalysis in Organic Synthesis 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/sos-sd-231-00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1.2.1 General Principles of Transition-Metal/Photocatalyst Dual Catalysis
The combination of transition-metal catalysis and visible-light photocatalysis offers opportunities for the development of unique new forms of reactivity. Presented in this chapter is an overview of the various strategies that can be used to design these dual catalytic transformations. Emphasis is placed on understanding the specific role that a photocatalyst can play in augmenting the reactivity of a substrate or cocatalyst to achieve otherwise challenging transformations.