史密斯算术行列式的两种不同计算方法

Xingjun Li, Shen Qu
{"title":"史密斯算术行列式的两种不同计算方法","authors":"Xingjun Li, Shen Qu","doi":"10.5281/ZENODO.1089413","DOIUrl":null,"url":null,"abstract":"The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant. Keywords—Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"13 1","pages":"186-190"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Different Computing Methods of the Smith Arithmetic Determinant\",\"authors\":\"Xingjun Li, Shen Qu\",\"doi\":\"10.5281/ZENODO.1089413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant. Keywords—Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"13 1\",\"pages\":\"186-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1089413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1089413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了史密斯算术行列式。用两种不同的方法,导出了史密斯算术行列式的显式公式。关键词:初等行变换,欧拉函数,矩阵分解,史密斯算术行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Different Computing Methods of the Smith Arithmetic Determinant
The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant. Keywords—Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信