基于上凸化算子的区间值双层优化问题

S. Dempe, N. Gadhi, Mohamed Ohda
{"title":"基于上凸化算子的区间值双层优化问题","authors":"S. Dempe, N. Gadhi, Mohamed Ohda","doi":"10.1051/ro/2023044","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a bilevel interval valued optimization problem. Reducing the problem into a one-level nonlinear and nonsmooth program, necessary optimality conditions are developed in terms of upper convexificators. Our approach consists of using an Abadie’s constraint qualification together with an appropriate optimal value reformulation. Later on, using an upper estimate for upper convexificators of the optimal value function, we give a more detailed result in terms of the initial data.\nThe appearing functions are not necessarily Lipschitz continuous, and neither the objective function nor\nthe constraint functions of the lower-level optimization problem are assumed to be convex. There are additional examples highlighting both our results and the limitations of certain past studies.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"53 1","pages":"1009-1025"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On interval-valued bilevel optimization problems using upper convexificators\",\"authors\":\"S. Dempe, N. Gadhi, Mohamed Ohda\",\"doi\":\"10.1051/ro/2023044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a bilevel interval valued optimization problem. Reducing the problem into a one-level nonlinear and nonsmooth program, necessary optimality conditions are developed in terms of upper convexificators. Our approach consists of using an Abadie’s constraint qualification together with an appropriate optimal value reformulation. Later on, using an upper estimate for upper convexificators of the optimal value function, we give a more detailed result in terms of the initial data.\\nThe appearing functions are not necessarily Lipschitz continuous, and neither the objective function nor\\nthe constraint functions of the lower-level optimization problem are assumed to be convex. There are additional examples highlighting both our results and the limitations of certain past studies.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":\"53 1\",\"pages\":\"1009-1025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类双层区间值优化问题。将该问题简化为一级非线性非光滑规划,利用上凸化子给出了必要的最优性条件。我们的方法包括使用Abadie约束条件和适当的最优值重新表述。随后,使用最优值函数的上凸化量的上估计,我们给出了初始数据的更详细的结果。出现的函数不一定是Lipschitz连续的,并且低层优化问题的目标函数和约束函数都不假设是凸的。还有一些额外的例子突出了我们的结果和某些过去研究的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On interval-valued bilevel optimization problems using upper convexificators
In this paper, we investigate a bilevel interval valued optimization problem. Reducing the problem into a one-level nonlinear and nonsmooth program, necessary optimality conditions are developed in terms of upper convexificators. Our approach consists of using an Abadie’s constraint qualification together with an appropriate optimal value reformulation. Later on, using an upper estimate for upper convexificators of the optimal value function, we give a more detailed result in terms of the initial data. The appearing functions are not necessarily Lipschitz continuous, and neither the objective function nor the constraint functions of the lower-level optimization problem are assumed to be convex. There are additional examples highlighting both our results and the limitations of certain past studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信