在Korteweg - de - Vries流体力学中模拟具有大初始梯度的压缩波

IF 0.5 Q3 MATHEMATICS
S. Zakharov, A. E. El’bert
{"title":"在Korteweg - de - Vries流体力学中模拟具有大初始梯度的压缩波","authors":"S. Zakharov, A. E. El’bert","doi":"10.13108/2017-9-1-41","DOIUrl":null,"url":null,"abstract":". We consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"12 1","pages":"41-53"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling compression waves with a large initial gradient in the Korteweg - de Vries hydrodynamics\",\"authors\":\"S. Zakharov, A. E. El’bert\",\"doi\":\"10.13108/2017-9-1-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"12 1\",\"pages\":\"41-53\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-1-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-1-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 本文研究了初值函数在高阶导数处具有小参数和大梯度的Korteweg-de Vries方程的柯西问题。通过数值方法和解析方法证明了由重整化得到的形式渐近是KdV方程的渐近解。我们得到了包含非单调初始数据的渐近解的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling compression waves with a large initial gradient in the Korteweg - de Vries hydrodynamics
. We consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信