{"title":"代数群的同态:可表示性与刚性","authors":"M. Brion","doi":"10.1307/mmj/20217214","DOIUrl":null,"url":null,"abstract":"Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Homomorphisms of Algebraic Groups: Representability and Rigidity\",\"authors\":\"M. Brion\",\"doi\":\"10.1307/mmj/20217214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217214\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homomorphisms of Algebraic Groups: Representability and Rigidity
Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.