代数群的同态:可表示性与刚性

IF 0.8 3区 数学 Q2 MATHEMATICS
M. Brion
{"title":"代数群的同态:可表示性与刚性","authors":"M. Brion","doi":"10.1307/mmj/20217214","DOIUrl":null,"url":null,"abstract":"Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Homomorphisms of Algebraic Groups: Representability and Rigidity\",\"authors\":\"M. Brion\",\"doi\":\"10.1307/mmj/20217214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217214\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

给定域k上的两个代数群G,H,研究了仿射(方案的)函子Homgp(G,H)和同态(代数群的)子函子Homgp(G,H)的可表征性。我们证明了如果k向量空间O(G)是有限维的,thom (G,H)在局部是有限型的群格式;如果H不是可变的,则反过来成立。当G是线性约化且H是光滑时,我们证明了Homgp(G,H)由光滑格式M表示;而且,H通过共轭作用于M的每个轨道都是开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homomorphisms of Algebraic Groups: Representability and Rigidity
Given two algebraic groups G, H over a field k, we investigate the representability of the functor of morphisms (of schemes) Hom(G,H) and the subfunctor of homomorphisms (of algebraic groups)Homgp(G,H). We show thatHom(G,H) is represented by a group scheme, locally of finite type, if the k-vector space O(G) is finite-dimensional; the converse holds if H is not étale. When G is linearly reductive and H is smooth, we show that Homgp(G,H) is represented by a smooth scheme M ; moreover, every orbit of H acting by conjugation on M is open.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信