低渗透油藏是EGR的高潜力资产

N. Hedzyk, O. Kondrat
{"title":"低渗透油藏是EGR的高潜力资产","authors":"N. Hedzyk, O. Kondrat","doi":"10.2118/208555-ms","DOIUrl":null,"url":null,"abstract":"\n Natural gas fields that are being developed in Ukraine, mainly relate to the high and medium permeability reservoirs, most of which are at the final stage of field life. In this situation one of the main sources of additional gas production is unconventional fields. This paper presents the analysis of challenges concerning development of low-permeable reservoirs and experimental results of conducted research, which provide the opportunity to establish technologies for enhance gas recovery factor.\n For this purpose, a series of laboratory experiments were carried out on the sand packed models of gas field with different permeability (from 9.7 to 93 mD) using natural gas. The pressure in the experiments varied from 1 to 10 MPa, temperature – 22-60 °C. According to the features of low-permeable gas fields development the research of displacement desorption with carbon dioxide and inert gas stripping by nitrogen was conducted. These studies also revealed the influence of pressure, temperature, reservoir permeability and non-hydrocarbon gases injection rate on the course of adsorption-desorption processes and their impact on the gas recovery factor.\n According to the experimental results of relative adsorption capacity determination it can be concluded that the carbon dioxide usage as the displacement agent can lead to producing adsorbed gas by more than 30% than by using nitrogen. To remove the adsorbed gas just reservoir pressure lowering is not enough due to the nature of adsorption isotherms. Particularly at pressure decreasing by 8-10 times compared to initial reservoir pressure only about 30-40% of the total amount of initially adsorbed gas is desorbed. And at considerable reservoir pressure reduction the further deposit development is not economically profitable.\n According to the results it was found that in the case of nitrogen usage the most effective method is full voidage replacement at injection pressure of 0.8 of the initial reservoir pressure, and in case of carbon dioxide usage - full voidage replacement method at pressure of 0.6 of the initial reservoir pressure. Taking into account availability of N2 and CO2, N2injection is recommended for further implementation.\n The influence of displacement agent injection pressure on gas recovery was experimentally proved. The physical sense of the processes taking place during natural gas desorption stimulation by non-hydrocarbon gases was justified. The effect of temperature, pressure and reservoir permeability on methane adsorption capacity were determined. The mathematical model for estimating adsorbed gas amount depending on the reservoir parameters was developed. Obtained results were summarized and recommendations for practical implementation of elaborated technological solutions were suggested.","PeriodicalId":11215,"journal":{"name":"Day 2 Wed, November 24, 2021","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Permeable Reservoirs as High Potential Assets for EGR\",\"authors\":\"N. Hedzyk, O. Kondrat\",\"doi\":\"10.2118/208555-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Natural gas fields that are being developed in Ukraine, mainly relate to the high and medium permeability reservoirs, most of which are at the final stage of field life. In this situation one of the main sources of additional gas production is unconventional fields. This paper presents the analysis of challenges concerning development of low-permeable reservoirs and experimental results of conducted research, which provide the opportunity to establish technologies for enhance gas recovery factor.\\n For this purpose, a series of laboratory experiments were carried out on the sand packed models of gas field with different permeability (from 9.7 to 93 mD) using natural gas. The pressure in the experiments varied from 1 to 10 MPa, temperature – 22-60 °C. According to the features of low-permeable gas fields development the research of displacement desorption with carbon dioxide and inert gas stripping by nitrogen was conducted. These studies also revealed the influence of pressure, temperature, reservoir permeability and non-hydrocarbon gases injection rate on the course of adsorption-desorption processes and their impact on the gas recovery factor.\\n According to the experimental results of relative adsorption capacity determination it can be concluded that the carbon dioxide usage as the displacement agent can lead to producing adsorbed gas by more than 30% than by using nitrogen. To remove the adsorbed gas just reservoir pressure lowering is not enough due to the nature of adsorption isotherms. Particularly at pressure decreasing by 8-10 times compared to initial reservoir pressure only about 30-40% of the total amount of initially adsorbed gas is desorbed. And at considerable reservoir pressure reduction the further deposit development is not economically profitable.\\n According to the results it was found that in the case of nitrogen usage the most effective method is full voidage replacement at injection pressure of 0.8 of the initial reservoir pressure, and in case of carbon dioxide usage - full voidage replacement method at pressure of 0.6 of the initial reservoir pressure. Taking into account availability of N2 and CO2, N2injection is recommended for further implementation.\\n The influence of displacement agent injection pressure on gas recovery was experimentally proved. The physical sense of the processes taking place during natural gas desorption stimulation by non-hydrocarbon gases was justified. The effect of temperature, pressure and reservoir permeability on methane adsorption capacity were determined. The mathematical model for estimating adsorbed gas amount depending on the reservoir parameters was developed. Obtained results were summarized and recommendations for practical implementation of elaborated technological solutions were suggested.\",\"PeriodicalId\":11215,\"journal\":{\"name\":\"Day 2 Wed, November 24, 2021\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, November 24, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208555-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, November 24, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208555-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乌克兰正在开发的天然气田主要涉及高、中渗透储层,其中大部分处于油田寿命的最后阶段。在这种情况下,非常规油田是增加天然气产量的主要来源之一。本文分析了低渗透油藏开发面临的挑战,并介绍了已开展的实验研究成果,为建立提高采收率的技术提供了契机。为此,利用天然气对不同渗透率(9.7 ~ 93 mD)的气田进行了砂填模型的室内实验。实验压力范围为1 ~ 10 MPa,温度范围为- 22 ~ 60℃。根据低渗透气田开发特点,进行了二氧化碳驱替解吸和氮气提气的研究。研究还揭示了压力、温度、储层渗透率和非烃气体注入速度对吸附-解吸过程的影响及其对采收率的影响。根据相对吸附量测定的实验结果可知,以二氧化碳为驱替剂比以氮气为驱替剂可使吸附气产量提高30%以上。由于吸附等温线的性质,仅仅降低储层压力是不够的。特别是当压力比初始储层压力降低8-10倍时,只有大约30-40%的初始吸附气体被解吸。在储层压力大幅降低的情况下,进一步开发是不具有经济效益的。结果表明,在氮气使用情况下,最有效的方法是在注入压力为油藏初始压力的0.8倍时进行全空隙置换;在二氧化碳使用情况下,在注入压力为油藏初始压力的0.6倍时进行全空隙置换。考虑到N2和CO2的可用性,建议进一步实施N2注入。实验证明了驱替剂注入压力对采收率的影响。非烃类气体解吸刺激天然气过程的物理意义是合理的。研究了温度、压力和储层渗透率对甲烷吸附能力的影响。建立了根据储层参数估算吸附气量的数学模型。总结了所取得的成果,并提出了具体实施的技术建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Permeable Reservoirs as High Potential Assets for EGR
Natural gas fields that are being developed in Ukraine, mainly relate to the high and medium permeability reservoirs, most of which are at the final stage of field life. In this situation one of the main sources of additional gas production is unconventional fields. This paper presents the analysis of challenges concerning development of low-permeable reservoirs and experimental results of conducted research, which provide the opportunity to establish technologies for enhance gas recovery factor. For this purpose, a series of laboratory experiments were carried out on the sand packed models of gas field with different permeability (from 9.7 to 93 mD) using natural gas. The pressure in the experiments varied from 1 to 10 MPa, temperature – 22-60 °C. According to the features of low-permeable gas fields development the research of displacement desorption with carbon dioxide and inert gas stripping by nitrogen was conducted. These studies also revealed the influence of pressure, temperature, reservoir permeability and non-hydrocarbon gases injection rate on the course of adsorption-desorption processes and their impact on the gas recovery factor. According to the experimental results of relative adsorption capacity determination it can be concluded that the carbon dioxide usage as the displacement agent can lead to producing adsorbed gas by more than 30% than by using nitrogen. To remove the adsorbed gas just reservoir pressure lowering is not enough due to the nature of adsorption isotherms. Particularly at pressure decreasing by 8-10 times compared to initial reservoir pressure only about 30-40% of the total amount of initially adsorbed gas is desorbed. And at considerable reservoir pressure reduction the further deposit development is not economically profitable. According to the results it was found that in the case of nitrogen usage the most effective method is full voidage replacement at injection pressure of 0.8 of the initial reservoir pressure, and in case of carbon dioxide usage - full voidage replacement method at pressure of 0.6 of the initial reservoir pressure. Taking into account availability of N2 and CO2, N2injection is recommended for further implementation. The influence of displacement agent injection pressure on gas recovery was experimentally proved. The physical sense of the processes taking place during natural gas desorption stimulation by non-hydrocarbon gases was justified. The effect of temperature, pressure and reservoir permeability on methane adsorption capacity were determined. The mathematical model for estimating adsorbed gas amount depending on the reservoir parameters was developed. Obtained results were summarized and recommendations for practical implementation of elaborated technological solutions were suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信