触发圆柱上涡脱落的壁面边界条件摄动

IF 1.1 4区 工程技术 Q4 MECHANICS
Manokaran Krishnamurthy, R. Mokkapati, Jayachandran Thankappan
{"title":"触发圆柱上涡脱落的壁面边界条件摄动","authors":"Manokaran Krishnamurthy, R. Mokkapati, Jayachandran Thankappan","doi":"10.1080/10618562.2022.2052280","DOIUrl":null,"url":null,"abstract":"A circular cylinder placed in a uniform flow with its axis perpendicular to the flow direction can result in an unsteady flow caused by vortex shedding. Numerical simulations attempting to capture this phenomenon may lack a trigger to cause the appropriate vortex shedding, consequently, asymmetric vortex shedding can be delayed or may not occur. Therefore, an artificial disturbance can be introduced into the flow field to initiate an earlier onset of vortex shedding. Here, the wall boundary condition is used to perturb the local shear layer. It is tested for a circular cylinder at Reynolds numbers of 40, 60 and 150. Application of wall perturbation technique triggers the onset of asymmetrical vortex shedding and in the absence of a perturbation, asymmetrical vortex shedding does not occur. The effect of the patch size and duration of application of initial perturbation on the onset of vortex shedding for Re = 150 is reported.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"7 1","pages":"872 - 892"},"PeriodicalIF":1.1000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation of Wall Boundary Condition to Trigger Vortex Shedding Over a Circular Cylinder\",\"authors\":\"Manokaran Krishnamurthy, R. Mokkapati, Jayachandran Thankappan\",\"doi\":\"10.1080/10618562.2022.2052280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A circular cylinder placed in a uniform flow with its axis perpendicular to the flow direction can result in an unsteady flow caused by vortex shedding. Numerical simulations attempting to capture this phenomenon may lack a trigger to cause the appropriate vortex shedding, consequently, asymmetric vortex shedding can be delayed or may not occur. Therefore, an artificial disturbance can be introduced into the flow field to initiate an earlier onset of vortex shedding. Here, the wall boundary condition is used to perturb the local shear layer. It is tested for a circular cylinder at Reynolds numbers of 40, 60 and 150. Application of wall perturbation technique triggers the onset of asymmetrical vortex shedding and in the absence of a perturbation, asymmetrical vortex shedding does not occur. The effect of the patch size and duration of application of initial perturbation on the onset of vortex shedding for Re = 150 is reported.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"7 1\",\"pages\":\"872 - 892\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2052280\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2052280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

将轴线垂直于流动方向的圆柱置于均匀流动中,会产生旋涡脱落引起的非定常流动。试图捕捉这种现象的数值模拟可能缺乏引起适当旋涡脱落的触发器,因此,不对称旋涡脱落可能会延迟或可能不会发生。因此,可以在流场中引入人为干扰,使旋涡脱落的发生时间提前。这里采用壁面边界条件对局部剪切层进行扰动。在雷诺数为40、60和150的圆柱体上进行了测试。应用壁面微扰技术触发了不对称涡脱落的发生,在没有微扰的情况下,不对称涡脱落不会发生。本文报道了初始扰动对Re = 150时旋涡脱落发生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation of Wall Boundary Condition to Trigger Vortex Shedding Over a Circular Cylinder
A circular cylinder placed in a uniform flow with its axis perpendicular to the flow direction can result in an unsteady flow caused by vortex shedding. Numerical simulations attempting to capture this phenomenon may lack a trigger to cause the appropriate vortex shedding, consequently, asymmetric vortex shedding can be delayed or may not occur. Therefore, an artificial disturbance can be introduced into the flow field to initiate an earlier onset of vortex shedding. Here, the wall boundary condition is used to perturb the local shear layer. It is tested for a circular cylinder at Reynolds numbers of 40, 60 and 150. Application of wall perturbation technique triggers the onset of asymmetrical vortex shedding and in the absence of a perturbation, asymmetrical vortex shedding does not occur. The effect of the patch size and duration of application of initial perturbation on the onset of vortex shedding for Re = 150 is reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信