具有Grassmann变量的簇代数

Q3 Mathematics
V. Ovsienko, M. Shapiro
{"title":"具有Grassmann变量的簇代数","authors":"V. Ovsienko, M. Shapiro","doi":"10.3934/ERA.2019.26.001","DOIUrl":null,"url":null,"abstract":"We develop a version of cluster algebra extending the ring of Laurent polynomials by adding Grassmann variables. These algebras can be described in terms of \"extended quivers,\" which are oriented hypergraphs. We describe mutations of such objects and define a corresponding commutative superalgebra. Our construction includes the notion of weighted quivers that has already appeared in different contexts. This paper is a step towards understanding the notion of cluster superalgebra.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Cluster algebras with Grassmann variables\",\"authors\":\"V. Ovsienko, M. Shapiro\",\"doi\":\"10.3934/ERA.2019.26.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a version of cluster algebra extending the ring of Laurent polynomials by adding Grassmann variables. These algebras can be described in terms of \\\"extended quivers,\\\" which are oriented hypergraphs. We describe mutations of such objects and define a corresponding commutative superalgebra. Our construction includes the notion of weighted quivers that has already appeared in different contexts. This paper is a step towards understanding the notion of cluster superalgebra.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2019.26.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2019.26.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21

摘要

我们发展了一个版本的聚类代数,通过添加Grassmann变量来扩展Laurent多项式的环。这些代数可以用“扩展颤振”来描述,它们是定向超图。我们描述了这些对象的突变,并定义了相应的交换超代数。我们的结构包括加权颤振的概念,已经出现在不同的上下文中。本文是理解聚类超代数概念的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster algebras with Grassmann variables
We develop a version of cluster algebra extending the ring of Laurent polynomials by adding Grassmann variables. These algebras can be described in terms of "extended quivers," which are oriented hypergraphs. We describe mutations of such objects and define a corresponding commutative superalgebra. Our construction includes the notion of weighted quivers that has already appeared in different contexts. This paper is a step towards understanding the notion of cluster superalgebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信