磷酸盐增溶菌与磷酸盐改进剂协同应用对番茄生产的影响

IF 1.8 Q2 AGRONOMY
D. Haile, B. Tesfaye, F. Assefa
{"title":"磷酸盐增溶菌与磷酸盐改进剂协同应用对番茄生产的影响","authors":"D. Haile, B. Tesfaye, F. Assefa","doi":"10.1155/2023/4717693","DOIUrl":null,"url":null,"abstract":"Phosphate solubilizing bacteria have multi-dimensional benefits in broad host range interaction, accessing nutrients, phytohormone induction, stress alleviation, biocontrol activity, and eco-friend approach. This study aimed to evaluate the efficacy of PSB isolates coinoculated with compost, bone meal, and DAP fertilizer on tomato growth response. Tomato seeds were treated with 10 selected PSB isolates separately and grown for 20 days on seedbed, then transplanted to field that was treated with external P-sources and enriched by PSB inoculum. PSB isolates showed positive interaction and achieved significant plant assays including plant height, leaves, branches, flowers, and fruit development. Isolate K-10-41 significantly promoted tomato plant height, floral development, and fruit yield, Mk-20-7 enhanced height and fruit weight whereas K-10-27 induced tomato fruit numbers. Compost application promoted tomato-PSB interaction and induced tomato vegetative growth whereas bone meal was least promotor for most of tomato plant assays. Bone meal was however, one of the top fruit development inducers (harvested 20.94 fruits/plant weighing 881.97 gm). Mixing 50% of recommended compost and DAP fertilizer application enhanced tomato vegetative growth and fruit yield (21 fruits/plant harvested that weighed 872.46 gm). Based on the overwhelming performance, K-10-41 and Mk-20-7 application together with compost and fertilizer mixture were found effective. Therefore, the results of this study imply that application of competent PSB isolates together with nutrient supplements improved symbiotic effectiveness, sustainable production, and environmental health. Consequently, these promising isolates would be recommended for tomato production of higher yield and sustainability after verifying their efficacy at different agroecology and taxonomic identification. Screening potential strains and evaluating their competence under different conditions would be the future perspectives to develop efficient inoculants. Moreover, synergetic application of organic supplements (compost, farmyard, bone meal, or other biowastes), bioinoculants, and proper agrochemicals maximize production and environmental health and is feasible for the economic, social, and ecological sense of balance.","PeriodicalId":30608,"journal":{"name":"Advances in Agriculture","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tomato Production under Synergistic Application of Phosphate Solubilizing Bacteria and Phosphate Amendments\",\"authors\":\"D. Haile, B. Tesfaye, F. Assefa\",\"doi\":\"10.1155/2023/4717693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphate solubilizing bacteria have multi-dimensional benefits in broad host range interaction, accessing nutrients, phytohormone induction, stress alleviation, biocontrol activity, and eco-friend approach. This study aimed to evaluate the efficacy of PSB isolates coinoculated with compost, bone meal, and DAP fertilizer on tomato growth response. Tomato seeds were treated with 10 selected PSB isolates separately and grown for 20 days on seedbed, then transplanted to field that was treated with external P-sources and enriched by PSB inoculum. PSB isolates showed positive interaction and achieved significant plant assays including plant height, leaves, branches, flowers, and fruit development. Isolate K-10-41 significantly promoted tomato plant height, floral development, and fruit yield, Mk-20-7 enhanced height and fruit weight whereas K-10-27 induced tomato fruit numbers. Compost application promoted tomato-PSB interaction and induced tomato vegetative growth whereas bone meal was least promotor for most of tomato plant assays. Bone meal was however, one of the top fruit development inducers (harvested 20.94 fruits/plant weighing 881.97 gm). Mixing 50% of recommended compost and DAP fertilizer application enhanced tomato vegetative growth and fruit yield (21 fruits/plant harvested that weighed 872.46 gm). Based on the overwhelming performance, K-10-41 and Mk-20-7 application together with compost and fertilizer mixture were found effective. Therefore, the results of this study imply that application of competent PSB isolates together with nutrient supplements improved symbiotic effectiveness, sustainable production, and environmental health. Consequently, these promising isolates would be recommended for tomato production of higher yield and sustainability after verifying their efficacy at different agroecology and taxonomic identification. Screening potential strains and evaluating their competence under different conditions would be the future perspectives to develop efficient inoculants. Moreover, synergetic application of organic supplements (compost, farmyard, bone meal, or other biowastes), bioinoculants, and proper agrochemicals maximize production and environmental health and is feasible for the economic, social, and ecological sense of balance.\",\"PeriodicalId\":30608,\"journal\":{\"name\":\"Advances in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4717693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4717693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

摘要

增磷菌在广泛的宿主相互作用、获取养分、植物激素诱导、应激缓解、生物防治活性和生态友好途径等方面具有多方面的益处。本研究旨在评价PSB分离株与堆肥、骨粉和DAP肥料共接种对番茄生长反应的影响。选择10株PSB菌株分别处理番茄种子,在苗床上培养20 d,移栽到外源磷处理和PSB接种富集的田间。PSB分离株表现出正交互作用,并取得了显著的植物测定结果,包括株高、叶、枝、花和果实发育。分离物K-10-41显著提高了番茄株高、花发育和果实产量,Mk-20-7显著提高了番茄株高和果实质量,K-10-27显著提高了番茄果实数量。堆肥对番茄与psb的相互作用有促进作用,对番茄的营养生长有促进作用,而骨粉对番茄的促进作用最小。骨粉是最佳的果实发育诱导剂之一(收获20.94个果实/株,重881.97 gm)。混合50%的推荐堆肥和DAP肥料,可促进番茄的营养生长和果实产量(每株收获21个果实,重872.46克)。根据压倒性的表现,K-10-41和Mk-20-7与堆肥和肥料混合施用是有效的。因此,本研究的结果表明,在营养补充剂的基础上,应用PSB活性菌株可以提高共生效率、可持续生产和环境健康。因此,在不同的农业生态学和分类鉴定中验证这些分离株的有效性后,将推荐这些有潜力的分离株用于高产和可持续的番茄生产。筛选潜在菌株并评价其在不同条件下的能力是今后开发高效接种剂的方向。此外,有机补充物(堆肥、农家肥、骨粉或其他生物废物)、生物接种剂和适当的农用化学品的协同应用,最大限度地提高了产量和环境健康,并且在经济、社会和生态平衡意义上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomato Production under Synergistic Application of Phosphate Solubilizing Bacteria and Phosphate Amendments
Phosphate solubilizing bacteria have multi-dimensional benefits in broad host range interaction, accessing nutrients, phytohormone induction, stress alleviation, biocontrol activity, and eco-friend approach. This study aimed to evaluate the efficacy of PSB isolates coinoculated with compost, bone meal, and DAP fertilizer on tomato growth response. Tomato seeds were treated with 10 selected PSB isolates separately and grown for 20 days on seedbed, then transplanted to field that was treated with external P-sources and enriched by PSB inoculum. PSB isolates showed positive interaction and achieved significant plant assays including plant height, leaves, branches, flowers, and fruit development. Isolate K-10-41 significantly promoted tomato plant height, floral development, and fruit yield, Mk-20-7 enhanced height and fruit weight whereas K-10-27 induced tomato fruit numbers. Compost application promoted tomato-PSB interaction and induced tomato vegetative growth whereas bone meal was least promotor for most of tomato plant assays. Bone meal was however, one of the top fruit development inducers (harvested 20.94 fruits/plant weighing 881.97 gm). Mixing 50% of recommended compost and DAP fertilizer application enhanced tomato vegetative growth and fruit yield (21 fruits/plant harvested that weighed 872.46 gm). Based on the overwhelming performance, K-10-41 and Mk-20-7 application together with compost and fertilizer mixture were found effective. Therefore, the results of this study imply that application of competent PSB isolates together with nutrient supplements improved symbiotic effectiveness, sustainable production, and environmental health. Consequently, these promising isolates would be recommended for tomato production of higher yield and sustainability after verifying their efficacy at different agroecology and taxonomic identification. Screening potential strains and evaluating their competence under different conditions would be the future perspectives to develop efficient inoculants. Moreover, synergetic application of organic supplements (compost, farmyard, bone meal, or other biowastes), bioinoculants, and proper agrochemicals maximize production and environmental health and is feasible for the economic, social, and ecological sense of balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Agriculture
Advances in Agriculture Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
100
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信