基于有限数据的集成少镜头学习智能故障诊断

Onat Güngör, T. Rosing, Baris Aksanli
{"title":"基于有限数据的集成少镜头学习智能故障诊断","authors":"Onat Güngör, T. Rosing, Baris Aksanli","doi":"10.1109/SENSORS47087.2021.9639633","DOIUrl":null,"url":null,"abstract":"Fault diagnosis is a key component of predictive system maintenance. Big data collected from sensors helps create data-driven fault diagnosis methods. However, it may be extremely costly to label specific fault types in a collected dataset. Hence, prediction algorithms should perform well under limited supervision. Few-shot learning (FSL) can provide a great prediction performance using very limited labeled data by discovering similarity among input pairs. But selection of a single FSL method may be arduous due to changing working conditions. Ensemble FSL solves this problem by combining a variety of FSL methods systematically. We propose an ensemble FSL framework, ENFES, where we combine 5 different Siamese neural network architectures using an iterative majority voting classifier. Our transfer learning-oriented experiments show that ENFES can improve the best algorithm significantly while using very limited labeled data. We obtain up to 16.4% improvement over the best algorithm by only using 0.3% of the training data.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ENFES: ENsemble FEw-Shot Learning For Intelligent Fault Diagnosis with Limited Data\",\"authors\":\"Onat Güngör, T. Rosing, Baris Aksanli\",\"doi\":\"10.1109/SENSORS47087.2021.9639633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis is a key component of predictive system maintenance. Big data collected from sensors helps create data-driven fault diagnosis methods. However, it may be extremely costly to label specific fault types in a collected dataset. Hence, prediction algorithms should perform well under limited supervision. Few-shot learning (FSL) can provide a great prediction performance using very limited labeled data by discovering similarity among input pairs. But selection of a single FSL method may be arduous due to changing working conditions. Ensemble FSL solves this problem by combining a variety of FSL methods systematically. We propose an ensemble FSL framework, ENFES, where we combine 5 different Siamese neural network architectures using an iterative majority voting classifier. Our transfer learning-oriented experiments show that ENFES can improve the best algorithm significantly while using very limited labeled data. We obtain up to 16.4% improvement over the best algorithm by only using 0.3% of the training data.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"26 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

故障诊断是预测性系统维护的重要组成部分。从传感器收集的大数据有助于创建数据驱动的故障诊断方法。然而,在收集的数据集中标记特定的故障类型可能是非常昂贵的。因此,预测算法应该在有限的监督下表现良好。少射学习(Few-shot learning, FSL)通过发现输入对之间的相似性,可以使用非常有限的标记数据提供很好的预测性能。但是,由于工作条件的变化,选择单一的FSL方法可能会很困难。集成FSL通过系统地结合多种FSL方法解决了这一问题。我们提出了一个集成的FSL框架,ENFES,其中我们使用迭代多数投票分类器组合了5种不同的Siamese神经网络架构。我们面向迁移学习的实验表明,ENFES可以在使用非常有限的标记数据的情况下显著改进最佳算法。我们仅使用0.3%的训练数据,就比最佳算法获得了16.4%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENFES: ENsemble FEw-Shot Learning For Intelligent Fault Diagnosis with Limited Data
Fault diagnosis is a key component of predictive system maintenance. Big data collected from sensors helps create data-driven fault diagnosis methods. However, it may be extremely costly to label specific fault types in a collected dataset. Hence, prediction algorithms should perform well under limited supervision. Few-shot learning (FSL) can provide a great prediction performance using very limited labeled data by discovering similarity among input pairs. But selection of a single FSL method may be arduous due to changing working conditions. Ensemble FSL solves this problem by combining a variety of FSL methods systematically. We propose an ensemble FSL framework, ENFES, where we combine 5 different Siamese neural network architectures using an iterative majority voting classifier. Our transfer learning-oriented experiments show that ENFES can improve the best algorithm significantly while using very limited labeled data. We obtain up to 16.4% improvement over the best algorithm by only using 0.3% of the training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信