{"title":"在n-均匀海姆斯夫平面上","authors":"David A. Drake","doi":"10.1016/S0021-9800(70)80066-7","DOIUrl":null,"url":null,"abstract":"<div><p>We define 1-<em>uniform</em> and <em>strongly</em> 1-<em>uniform</em> Hjelmslev planes (<em>H</em>-planes) to be the ordinary affine and projective planes. An <em>n-uniform H</em>-plane (<em>n</em>>1) is an <em>H</em>-plane whose point neighborhoods all are (<em>n</em>−1)-uniform affine <em>H</em>-planes. A <em>strongly n-uniform H</em>-plane (<em>n</em>>1) is an <em>n</em>-uniform projective <em>H</em>-plane which collapses to a strongly (<em>n</em>−1)-uniform <em>H</em>-plane upon identifying maximally connected points (points joined by <em>t</em> lines). All uniform projective <em>H</em>-planes are strongly <em>n</em>-uniform with <em>n</em>=1 or <em>n</em>=2. It is proved that all Desarguesian projective <em>H</em>-planes are strongly <em>n</em>-uniform. Many nice intersection properties are given for <em>n</em>-uniform <em>H</em>-planes; strongly <em>n</em>-uniform <em>H</em>-planes satisfy a strong intersection property called “property <em>A</em>.” It is proved that an <em>n</em>-uniform projective <em>H</em>-plane <em>π</em> is strongly <em>n</em>-uniform if and only if <em>π</em> satisfies property <em>A</em>, and also if and only if <em>π</em><sup>*</sup>, the dual of <em>π</em>, is <em>n</em>-uniform.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 3","pages":"Pages 267-288"},"PeriodicalIF":0.0000,"publicationDate":"1970-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80066-7","citationCount":"47","resultStr":"{\"title\":\"On n-uniform Hjelmslev planes\",\"authors\":\"David A. Drake\",\"doi\":\"10.1016/S0021-9800(70)80066-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We define 1-<em>uniform</em> and <em>strongly</em> 1-<em>uniform</em> Hjelmslev planes (<em>H</em>-planes) to be the ordinary affine and projective planes. An <em>n-uniform H</em>-plane (<em>n</em>>1) is an <em>H</em>-plane whose point neighborhoods all are (<em>n</em>−1)-uniform affine <em>H</em>-planes. A <em>strongly n-uniform H</em>-plane (<em>n</em>>1) is an <em>n</em>-uniform projective <em>H</em>-plane which collapses to a strongly (<em>n</em>−1)-uniform <em>H</em>-plane upon identifying maximally connected points (points joined by <em>t</em> lines). All uniform projective <em>H</em>-planes are strongly <em>n</em>-uniform with <em>n</em>=1 or <em>n</em>=2. It is proved that all Desarguesian projective <em>H</em>-planes are strongly <em>n</em>-uniform. Many nice intersection properties are given for <em>n</em>-uniform <em>H</em>-planes; strongly <em>n</em>-uniform <em>H</em>-planes satisfy a strong intersection property called “property <em>A</em>.” It is proved that an <em>n</em>-uniform projective <em>H</em>-plane <em>π</em> is strongly <em>n</em>-uniform if and only if <em>π</em> satisfies property <em>A</em>, and also if and only if <em>π</em><sup>*</sup>, the dual of <em>π</em>, is <em>n</em>-uniform.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 3\",\"pages\":\"Pages 267-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80066-7\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We define 1-uniform and strongly 1-uniform Hjelmslev planes (H-planes) to be the ordinary affine and projective planes. An n-uniform H-plane (n>1) is an H-plane whose point neighborhoods all are (n−1)-uniform affine H-planes. A strongly n-uniform H-plane (n>1) is an n-uniform projective H-plane which collapses to a strongly (n−1)-uniform H-plane upon identifying maximally connected points (points joined by t lines). All uniform projective H-planes are strongly n-uniform with n=1 or n=2. It is proved that all Desarguesian projective H-planes are strongly n-uniform. Many nice intersection properties are given for n-uniform H-planes; strongly n-uniform H-planes satisfy a strong intersection property called “property A.” It is proved that an n-uniform projective H-plane π is strongly n-uniform if and only if π satisfies property A, and also if and only if π*, the dual of π, is n-uniform.