{"title":"有限群和有理轨道的广义扭曲量子双重","authors":"G. Mason, S. Ng","doi":"10.21915/bimas.2019101","DOIUrl":null,"url":null,"abstract":"In previous work the authors introduced a new class of modular quasi-Hopf algebras $D^{\\omega}(G, A)$ associated to a finite group $G$, a central subgroup $A$, and a $3$-cocycle $\\omega\\in Z^3(G, C^x)$. In the present paper we propose a description of the class of orbifold models of rational vertex operator algebras whose module category is tensor equivalent to $D^{\\omega}(G, A)$-mod. The paper includes background on quasi-Hopf algebras and a discussion of some relevant orbifolds.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"6 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized twisted quantum doubles of a finite group and rational orbifolds\",\"authors\":\"G. Mason, S. Ng\",\"doi\":\"10.21915/bimas.2019101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work the authors introduced a new class of modular quasi-Hopf algebras $D^{\\\\omega}(G, A)$ associated to a finite group $G$, a central subgroup $A$, and a $3$-cocycle $\\\\omega\\\\in Z^3(G, C^x)$. In the present paper we propose a description of the class of orbifold models of rational vertex operator algebras whose module category is tensor equivalent to $D^{\\\\omega}(G, A)$-mod. The paper includes background on quasi-Hopf algebras and a discussion of some relevant orbifolds.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
在先前的工作中,作者引入了一类新的模拟hopf代数$D^{\omega}(G, a)$,它们与Z^3(G, C^x)$中的有限群$G$、中心子群$ a $和$3$-环$\omega $相关联。本文给出了一类模范畴张量等价于D^{\ ω}(G, a)$-mod的有理顶点算子代数的轨道模型的描述。本文包括拟hopf代数的背景和对一些相关轨道的讨论。
Generalized twisted quantum doubles of a finite group and rational orbifolds
In previous work the authors introduced a new class of modular quasi-Hopf algebras $D^{\omega}(G, A)$ associated to a finite group $G$, a central subgroup $A$, and a $3$-cocycle $\omega\in Z^3(G, C^x)$. In the present paper we propose a description of the class of orbifold models of rational vertex operator algebras whose module category is tensor equivalent to $D^{\omega}(G, A)$-mod. The paper includes background on quasi-Hopf algebras and a discussion of some relevant orbifolds.