不止一个器件:多栅极无结场效应管结构的功能实现

Q4 Engineering
Sehtab Hossain, Md Arif Iqbal, Prerana Samant, M. Siddiki, Mostafizur Rahman
{"title":"不止一个器件:多栅极无结场效应管结构的功能实现","authors":"Sehtab Hossain, Md Arif Iqbal, Prerana Samant, M. Siddiki, Mostafizur Rahman","doi":"10.37256/jeee.2120231848","DOIUrl":null,"url":null,"abstract":"The miniaturization of the transistor sizes to keep up with Moore's Law in Integrated Circuits (ICs) is rapidly approaching the physical limits. To push the horizons of Moore's Law, among the various approaches available in the literature, single device-based computing shows promise by achieving more functionality in a smaller footprint. However, a single device-based computing approach either mainly embeds only the primitive logic hence inefficient in performance, or requires exotic devices like spin logic devices, and memristor which involve non-conventional costly manufacturing steps. Previously, we introduced the concept of embedding logic in a single device based on Crosstalk Computing, where deterministic signal interference between nano-metal lines is leveraged for logic computation. This paper elaborates upon the methodology of realizing complex Boolean functions through TCAD-based modeling and simulations, quantifying results, and compares against existing approaches. Core to our approach is a multi-gate Junctionless FET-based device, methodical placement of the independent gates, manipulation of device parameters, and dimension. This paper shows the implementation of various complex logic functions along with the primitive gates in the proposed device. Our benchmark results show 8x density benefits and 8x less power consumption on average than CMOS-based implementation. For the case of delay, elementary and complex logic devices show comparable characteristics with 14 nm PTM counterparts. Such realization of complex functions in a stand-alone device is compatible with the existing fabrication process.","PeriodicalId":39047,"journal":{"name":"Journal of Electrical and Electronics Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Than a Device: Function Implementation in a Multi-Gate Junctionless FET Structure\",\"authors\":\"Sehtab Hossain, Md Arif Iqbal, Prerana Samant, M. Siddiki, Mostafizur Rahman\",\"doi\":\"10.37256/jeee.2120231848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miniaturization of the transistor sizes to keep up with Moore's Law in Integrated Circuits (ICs) is rapidly approaching the physical limits. To push the horizons of Moore's Law, among the various approaches available in the literature, single device-based computing shows promise by achieving more functionality in a smaller footprint. However, a single device-based computing approach either mainly embeds only the primitive logic hence inefficient in performance, or requires exotic devices like spin logic devices, and memristor which involve non-conventional costly manufacturing steps. Previously, we introduced the concept of embedding logic in a single device based on Crosstalk Computing, where deterministic signal interference between nano-metal lines is leveraged for logic computation. This paper elaborates upon the methodology of realizing complex Boolean functions through TCAD-based modeling and simulations, quantifying results, and compares against existing approaches. Core to our approach is a multi-gate Junctionless FET-based device, methodical placement of the independent gates, manipulation of device parameters, and dimension. This paper shows the implementation of various complex logic functions along with the primitive gates in the proposed device. Our benchmark results show 8x density benefits and 8x less power consumption on average than CMOS-based implementation. For the case of delay, elementary and complex logic devices show comparable characteristics with 14 nm PTM counterparts. Such realization of complex functions in a stand-alone device is compatible with the existing fabrication process.\",\"PeriodicalId\":39047,\"journal\":{\"name\":\"Journal of Electrical and Electronics Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/jeee.2120231848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/jeee.2120231848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了跟上集成电路中的摩尔定律,晶体管尺寸的小型化正在迅速接近物理极限。为了推动摩尔定律的视野,在文献中可用的各种方法中,基于单个设备的计算通过在更小的空间内实现更多功能显示出希望。然而,基于单一设备的计算方法要么主要嵌入原始逻辑,因此性能低下,要么需要特殊的设备,如自旋逻辑设备和忆阻器,这涉及非传统的昂贵制造步骤。在此之前,我们介绍了在基于串扰计算的单个器件中嵌入逻辑的概念,其中利用纳米金属线之间的确定性信号干扰进行逻辑计算。本文详细阐述了基于tcad的复杂布尔函数建模与仿真的实现方法,对结果进行了量化,并与现有方法进行了比较。我们的方法的核心是基于多栅极无结场效应晶体管的器件,独立栅极的系统放置,器件参数和尺寸的操作。本文展示了各种复杂逻辑功能的实现以及所提出器件的基本门。我们的基准测试结果显示,与基于cmos的实现相比,平均密度优势为8倍,功耗降低8倍。在延迟的情况下,基本和复杂逻辑器件显示出与14nm PTM对应器件相当的特性。这种在独立设备中实现复杂功能的方法与现有的制造工艺是兼容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Than a Device: Function Implementation in a Multi-Gate Junctionless FET Structure
The miniaturization of the transistor sizes to keep up with Moore's Law in Integrated Circuits (ICs) is rapidly approaching the physical limits. To push the horizons of Moore's Law, among the various approaches available in the literature, single device-based computing shows promise by achieving more functionality in a smaller footprint. However, a single device-based computing approach either mainly embeds only the primitive logic hence inefficient in performance, or requires exotic devices like spin logic devices, and memristor which involve non-conventional costly manufacturing steps. Previously, we introduced the concept of embedding logic in a single device based on Crosstalk Computing, where deterministic signal interference between nano-metal lines is leveraged for logic computation. This paper elaborates upon the methodology of realizing complex Boolean functions through TCAD-based modeling and simulations, quantifying results, and compares against existing approaches. Core to our approach is a multi-gate Junctionless FET-based device, methodical placement of the independent gates, manipulation of device parameters, and dimension. This paper shows the implementation of various complex logic functions along with the primitive gates in the proposed device. Our benchmark results show 8x density benefits and 8x less power consumption on average than CMOS-based implementation. For the case of delay, elementary and complex logic devices show comparable characteristics with 14 nm PTM counterparts. Such realization of complex functions in a stand-alone device is compatible with the existing fabrication process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Electronics Engineering
Journal of Electrical and Electronics Engineering Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊介绍: Journal of Electrical and Electronics Engineering is a scientific interdisciplinary, application-oriented publication that offer to the researchers and to the PhD students the possibility to disseminate their novel and original scientific and research contributions in the field of electrical and electronics engineering. The articles are reviewed by professionals and the selection of the papers is based only on the quality of their content and following the next criteria: the papers presents the research results of the authors, the papers / the content of the papers have not been submitted or published elsewhere, the paper must be written in English, as well as the fact that the papers should include in the reference list papers already published in recent years in the Journal of Electrical and Electronics Engineering that present similar research results. The topics and instructions for authors of this journal can be found to the appropiate sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信