压力鲁棒Stokes离散速度误差的保证上界

IF 3.8 2区 数学 Q1 MATHEMATICS
P. Lederer, C. Merdon
{"title":"压力鲁棒Stokes离散速度误差的保证上界","authors":"P. Lederer, C. Merdon","doi":"10.1515/jnma-2021-0078","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"24 1","pages":"267 - 294"},"PeriodicalIF":3.8000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations\",\"authors\":\"P. Lederer, C. Merdon\",\"doi\":\"10.1515/jnma-2021-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":\"24 1\",\"pages\":\"267 - 294\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在改进Stokes问题的保证误差控制,重点关注压力鲁棒性,即计算独立于精确压力的离散速度的离散。无散度原始法和完全平衡双混合法计算速度应力的速度误差具有Prager-Synge型结果。本文的第一个主要成果是一个对原始方法和对偶方法具有宽松约束的框架。这使得可以使用最近开发的质量守恒混合应力离散来设计平衡通量,并获得任何压力稳健(不一定无发散)原始离散的压力无关保证上界。第二个主要结果是一个可证明的有效的局部平衡通量设计与相对较低的数值成本。数值算例验证了理论结果,并表明本文提出的保证上界的效率指标接近于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations
Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信