Kouame Beranger Edja, K. A. Touré, Brou Jean-Claude Koua
{"title":"非线性边界条件下热方程的数值求解","authors":"Kouame Beranger Edja, K. A. Touré, Brou Jean-Claude Koua","doi":"10.22436/jnsa.013.01.06","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quenching behavior of semidiscretizations of the heat equation with nonlinear boundary conditions. We obtain some conditions under which the positive solution of the semidiscrete problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain some results on numerical quenching rate. Finally we give some numerical results to illustrate our analysis.","PeriodicalId":48799,"journal":{"name":"Journal of Nonlinear Sciences and Applications","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical quenching of a heat equation with nonlinear boundary conditions\",\"authors\":\"Kouame Beranger Edja, K. A. Touré, Brou Jean-Claude Koua\",\"doi\":\"10.22436/jnsa.013.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the quenching behavior of semidiscretizations of the heat equation with nonlinear boundary conditions. We obtain some conditions under which the positive solution of the semidiscrete problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain some results on numerical quenching rate. Finally we give some numerical results to illustrate our analysis.\",\"PeriodicalId\":48799,\"journal\":{\"name\":\"Journal of Nonlinear Sciences and Applications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.013.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.013.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical quenching of a heat equation with nonlinear boundary conditions
In this paper, we study the quenching behavior of semidiscretizations of the heat equation with nonlinear boundary conditions. We obtain some conditions under which the positive solution of the semidiscrete problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain some results on numerical quenching rate. Finally we give some numerical results to illustrate our analysis.
期刊介绍:
The Journal of Nonlinear Science and Applications (JNSA) (print: ISSN 2008-1898 online: ISSN 2008-1901) is an international journal which provides very fast publication of original research papers in the fields of nonlinear analysis. Journal of Nonlinear Science and Applications is a journal that aims to unite and stimulate mathematical research community. It publishes original research papers and survey articles on all areas of nonlinear analysis and theoretical applied nonlinear analysis. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics. Manuscripts are invited from academicians, research students, and scientists for publication consideration. Papers are accepted for editorial consideration through online submission with the understanding that they have not been published, submitted or accepted for publication elsewhere.