{"title":"任意离散源的速率失真定理","authors":"Po-Ning Chen, F. Alajaji","doi":"10.1109/18.681347","DOIUrl":null,"url":null,"abstract":"A rate-distortion theorem for arbitrary (not necessarily stationary or ergodic) discrete-time finite-alphabet sources is given. This result, which provides the expression of the minimum /spl epsiv/-achievable fixed-length coding rate subject to a fidelity criterion, extends a recent data compression theorem by Steinberg and Verdu (see ibid., vol.42, p.63-86 (Jan. 1996).","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"53 1","pages":"1666-1668"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Rate-Distortion Theorem for Arbitrary Discrete Sources\",\"authors\":\"Po-Ning Chen, F. Alajaji\",\"doi\":\"10.1109/18.681347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rate-distortion theorem for arbitrary (not necessarily stationary or ergodic) discrete-time finite-alphabet sources is given. This result, which provides the expression of the minimum /spl epsiv/-achievable fixed-length coding rate subject to a fidelity criterion, extends a recent data compression theorem by Steinberg and Verdu (see ibid., vol.42, p.63-86 (Jan. 1996).\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"53 1\",\"pages\":\"1666-1668\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.681347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rate-Distortion Theorem for Arbitrary Discrete Sources
A rate-distortion theorem for arbitrary (not necessarily stationary or ergodic) discrete-time finite-alphabet sources is given. This result, which provides the expression of the minimum /spl epsiv/-achievable fixed-length coding rate subject to a fidelity criterion, extends a recent data compression theorem by Steinberg and Verdu (see ibid., vol.42, p.63-86 (Jan. 1996).