空间图的Dehn着色调色板和顶点条件的分类

Kanako Oshiro, Natsumi Oyamaguchi
{"title":"空间图的Dehn着色调色板和顶点条件的分类","authors":"Kanako Oshiro, Natsumi Oyamaguchi","doi":"10.1142/S0218216521500152","DOIUrl":null,"url":null,"abstract":"In this paper, we study Dehn colorings of spatial graph diagrams, and classify the vertex conditions, equivalently the palettes. We give some example of spatial graphs which can be distinguished by the number of Dehn colorings with selecting an appropriate palette. Furthermore, we also discuss the generalized version of palettes, which is defined for knot-theoretic ternary-quasigroups and region colorings of spatial graph diagrams.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions\",\"authors\":\"Kanako Oshiro, Natsumi Oyamaguchi\",\"doi\":\"10.1142/S0218216521500152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study Dehn colorings of spatial graph diagrams, and classify the vertex conditions, equivalently the palettes. We give some example of spatial graphs which can be distinguished by the number of Dehn colorings with selecting an appropriate palette. Furthermore, we also discuss the generalized version of palettes, which is defined for knot-theoretic ternary-quasigroups and region colorings of spatial graph diagrams.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218216521500152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216521500152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究空间图的Dehn着色,并对顶点条件进行分类,即对调色板进行分类。我们给出了一些空间图的例子,可以通过选择适当的调色板来区分Dehn颜色的数量。此外,我们还讨论了空间图的结论三元拟群和区域着色所定义的调色板的广义版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions
In this paper, we study Dehn colorings of spatial graph diagrams, and classify the vertex conditions, equivalently the palettes. We give some example of spatial graphs which can be distinguished by the number of Dehn colorings with selecting an appropriate palette. Furthermore, we also discuss the generalized version of palettes, which is defined for knot-theoretic ternary-quasigroups and region colorings of spatial graph diagrams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信