肺结节的一种分类方法

Tumor discovery Pub Date : 2023-03-08 DOI:10.36922/td.317
Naveen Hm, N. C, M. Vn
{"title":"肺结节的一种分类方法","authors":"Naveen Hm, N. C, M. Vn","doi":"10.36922/td.317","DOIUrl":null,"url":null,"abstract":"The main objective of the proposed work is to develop an automated computer-aided detection (CAD) system to classify lung nodules using various classifiers from computed tomography (CT) images. One of the most important steps in lung nodule detection is the classification of nodule and non-nodule patterns in CT. The early detection of the condition helps lower the mortality rate. The developed CAD systems consist of segmentation, feature extraction, and classification. In this work, a filter method is used to segment the infected region. Later, we extracted features through and fed into classifiers such as Decision Stump (DS), Random Forest (RF), and Back Propagation Neural Network (BPNN). The experimentation was conducted on LIDC-IDRI dataset, and the results with BPNN outperformed those with DS and RF classifiers.","PeriodicalId":94260,"journal":{"name":"Tumor discovery","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for classification of lung nodules\",\"authors\":\"Naveen Hm, N. C, M. Vn\",\"doi\":\"10.36922/td.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the proposed work is to develop an automated computer-aided detection (CAD) system to classify lung nodules using various classifiers from computed tomography (CT) images. One of the most important steps in lung nodule detection is the classification of nodule and non-nodule patterns in CT. The early detection of the condition helps lower the mortality rate. The developed CAD systems consist of segmentation, feature extraction, and classification. In this work, a filter method is used to segment the infected region. Later, we extracted features through and fed into classifiers such as Decision Stump (DS), Random Forest (RF), and Back Propagation Neural Network (BPNN). The experimentation was conducted on LIDC-IDRI dataset, and the results with BPNN outperformed those with DS and RF classifiers.\",\"PeriodicalId\":94260,\"journal\":{\"name\":\"Tumor discovery\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumor discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/td.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/td.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出的工作的主要目的是开发一个自动计算机辅助检测(CAD)系统,使用计算机断层扫描(CT)图像中的各种分类器对肺结节进行分类。肺结节的CT诊断中最重要的步骤之一是结节和非结节的分类。这种疾病的早期发现有助于降低死亡率。所开发的CAD系统包括分割、特征提取和分类。在这项工作中,使用过滤方法对感染区域进行分割。随后,我们通过决策树桩(DS)、随机森林(RF)和反向传播神经网络(BPNN)等分类器提取特征并将其输入分类器。在LIDC-IDRI数据集上进行了实验,BPNN分类器的分类效果优于DS和RF分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach for classification of lung nodules
The main objective of the proposed work is to develop an automated computer-aided detection (CAD) system to classify lung nodules using various classifiers from computed tomography (CT) images. One of the most important steps in lung nodule detection is the classification of nodule and non-nodule patterns in CT. The early detection of the condition helps lower the mortality rate. The developed CAD systems consist of segmentation, feature extraction, and classification. In this work, a filter method is used to segment the infected region. Later, we extracted features through and fed into classifiers such as Decision Stump (DS), Random Forest (RF), and Back Propagation Neural Network (BPNN). The experimentation was conducted on LIDC-IDRI dataset, and the results with BPNN outperformed those with DS and RF classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信