Florent Langenfeld, Tunde Aderinwale, Charles W Christoffer, Woong-Hee Shin, Genki Terashi, Xiao Wang, D. Kihara, H. Benhabiles, K. Hammoudi, A. Cabani, Féryal Windal, Mahmoud Melkemi, Ekpo Otu, R. Zwiggelaar, David Hunter, Yonghuai Liu, Léa Sirugue, Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, D. Le, Hai-Dang Nguyen, M. Tran, M. Montès
{"title":"SHREC 2021:基于表面的蛋白质结构域检索","authors":"Florent Langenfeld, Tunde Aderinwale, Charles W Christoffer, Woong-Hee Shin, Genki Terashi, Xiao Wang, D. Kihara, H. Benhabiles, K. Hammoudi, A. Cabani, Féryal Windal, Mahmoud Melkemi, Ekpo Otu, R. Zwiggelaar, David Hunter, Yonghuai Liu, Léa Sirugue, Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, D. Le, Hai-Dang Nguyen, M. Tran, M. Montès","doi":"10.2312/3DOR.20211308","DOIUrl":null,"url":null,"abstract":"Proteins are essential to nearly all cellular mechanism, and often interact through their surface with other cell molecules, such as proteins and ligands. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence surface, which is therefore of primary importance for their activity. In the present work, we assess the ability of five methods to retrieve similar protein surfaces, using either their shape only (3D meshes), or their shape and the electrostatic potential at their surface, an important surface property. Five different groups participated in this challenge using the shape only, and one group extended its pre-existing algorithm to handle the electrostatic potential. The results reveal both the ability of the methods to detect related proteins and their difficulties to distinguish between topologically related proteins. CCS Concepts • Applied computing → Computational biology; • General and reference → Evaluation;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"19 1","pages":"19-26"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHREC 2021: Surface-based Protein Domains Retrieval\",\"authors\":\"Florent Langenfeld, Tunde Aderinwale, Charles W Christoffer, Woong-Hee Shin, Genki Terashi, Xiao Wang, D. Kihara, H. Benhabiles, K. Hammoudi, A. Cabani, Féryal Windal, Mahmoud Melkemi, Ekpo Otu, R. Zwiggelaar, David Hunter, Yonghuai Liu, Léa Sirugue, Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, D. Le, Hai-Dang Nguyen, M. Tran, M. Montès\",\"doi\":\"10.2312/3DOR.20211308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proteins are essential to nearly all cellular mechanism, and often interact through their surface with other cell molecules, such as proteins and ligands. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence surface, which is therefore of primary importance for their activity. In the present work, we assess the ability of five methods to retrieve similar protein surfaces, using either their shape only (3D meshes), or their shape and the electrostatic potential at their surface, an important surface property. Five different groups participated in this challenge using the shape only, and one group extended its pre-existing algorithm to handle the electrostatic potential. The results reveal both the ability of the methods to detect related proteins and their difficulties to distinguish between topologically related proteins. CCS Concepts • Applied computing → Computational biology; • General and reference → Evaluation;\",\"PeriodicalId\":72958,\"journal\":{\"name\":\"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval\",\"volume\":\"19 1\",\"pages\":\"19-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/3DOR.20211308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/3DOR.20211308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHREC 2021: Surface-based Protein Domains Retrieval
Proteins are essential to nearly all cellular mechanism, and often interact through their surface with other cell molecules, such as proteins and ligands. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence surface, which is therefore of primary importance for their activity. In the present work, we assess the ability of five methods to retrieve similar protein surfaces, using either their shape only (3D meshes), or their shape and the electrostatic potential at their surface, an important surface property. Five different groups participated in this challenge using the shape only, and one group extended its pre-existing algorithm to handle the electrostatic potential. The results reveal both the ability of the methods to detect related proteins and their difficulties to distinguish between topologically related proteins. CCS Concepts • Applied computing → Computational biology; • General and reference → Evaluation;