小粘度对比下二维Navier-Stokes自由边界的全局正则性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Gancedo, Eduardo García-Juárez
{"title":"小粘度对比下二维Navier-Stokes自由边界的全局正则性","authors":"F. Gancedo, Eduardo García-Juárez","doi":"10.4171/aihpc/74","DOIUrl":null,"url":null,"abstract":"This paper studies the dynamics of two incompressible immiscible fluids in 2D modeled by the inhomogeneous Navier-Stokes equations. We prove that if initially the viscosity contrast is small then there is global-in-time regularity. This result has been proved recently in [32] for $H^{5/2}$ Sobolev regularity of the interface. Here we provide a new approach which allows to obtain preservation of the natural $C^{1+\\gamma}$ H\\\"older regularity of the interface for all $0<\\gamma<1$. Our proof is direct and allows for low Sobolev regularity of the initial velocity without any extra technicality. It uses new quantitative harmonic analysis bounds for $C^{\\gamma}$ norms of even singular integral operators on characteristic functions of $C^{1+\\gamma}$ domains [21].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global regularity of 2D Navier–Stokes free boundary with small viscosity contrast\",\"authors\":\"F. Gancedo, Eduardo García-Juárez\",\"doi\":\"10.4171/aihpc/74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the dynamics of two incompressible immiscible fluids in 2D modeled by the inhomogeneous Navier-Stokes equations. We prove that if initially the viscosity contrast is small then there is global-in-time regularity. This result has been proved recently in [32] for $H^{5/2}$ Sobolev regularity of the interface. Here we provide a new approach which allows to obtain preservation of the natural $C^{1+\\\\gamma}$ H\\\\\\\"older regularity of the interface for all $0<\\\\gamma<1$. Our proof is direct and allows for low Sobolev regularity of the initial velocity without any extra technicality. It uses new quantitative harmonic analysis bounds for $C^{\\\\gamma}$ norms of even singular integral operators on characteristic functions of $C^{1+\\\\gamma}$ domains [21].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/74\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/74","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了用非齐次Navier-Stokes方程模拟的两种不可压缩非混相二维流体的动力学问题。我们证明了如果初始粘度对比较小,则存在全局实时规律性。最近在文献[32]中对界面的$H^{5/2}$ Sobolev正则性证明了这一结果。在这里,我们提供了一种新的方法,该方法允许获得对所有$0<\gamma<1$的接口的自然$C^{1+\gamma}$ H\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \正则性的保存。我们的证明是直接的,允许低索博列夫规则的初速度,没有任何额外的技术。在$C^{1+\gamma}$定义域的特征函数上,对偶奇异积分算子的$C^{\gamma}$范数使用了新的定量调和分析界[21]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global regularity of 2D Navier–Stokes free boundary with small viscosity contrast
This paper studies the dynamics of two incompressible immiscible fluids in 2D modeled by the inhomogeneous Navier-Stokes equations. We prove that if initially the viscosity contrast is small then there is global-in-time regularity. This result has been proved recently in [32] for $H^{5/2}$ Sobolev regularity of the interface. Here we provide a new approach which allows to obtain preservation of the natural $C^{1+\gamma}$ H\"older regularity of the interface for all $0<\gamma<1$. Our proof is direct and allows for low Sobolev regularity of the initial velocity without any extra technicality. It uses new quantitative harmonic analysis bounds for $C^{\gamma}$ norms of even singular integral operators on characteristic functions of $C^{1+\gamma}$ domains [21].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信