网络心理学:网络对抗战术和技术的纵向分析

Marshall S. Rich
{"title":"网络心理学:网络对抗战术和技术的纵向分析","authors":"Marshall S. Rich","doi":"10.3390/analytics2030035","DOIUrl":null,"url":null,"abstract":"The rapid proliferation of cyberthreats necessitates a robust understanding of their evolution and associated tactics, as found in this study. A longitudinal analysis of these threats was conducted, utilizing a six-year data set obtained from a deception network, which emphasized its significance in the study’s primary aim: the exhaustive exploration of the tactics and strategies utilized by cybercriminals and how these tactics and techniques evolved in sophistication and target specificity over time. Different cyberattack instances were dissected and interpreted, with the patterns behind target selection shown. The focus was on unveiling patterns behind target selection and highlighting recurring techniques and emerging trends. The study’s methodological design incorporated data preprocessing, exploratory data analysis, clustering and anomaly detection, temporal analysis, and cross-referencing. The validation process underscored the reliability and robustness of the findings, providing evidence of increasingly sophisticated, targeted cyberattacks. The work identified three distinct network traffic behavior clusters and temporal attack patterns. A validated scoring mechanism provided a benchmark for network anomalies, applicable for predictive analysis and facilitating comparative study of network behaviors. This benchmarking aids organizations in proactively identifying and responding to potential threats. The study significantly contributed to the cybersecurity discourse, offering insights that could guide the development of more effective defense strategies. The need for further investigation into the nature of detected anomalies was acknowledged, advocating for continuous research and proactive defense strategies in the face of the constantly evolving landscape of cyberthreats.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyberpsychology: A Longitudinal Analysis of Cyber Adversarial Tactics and Techniques\",\"authors\":\"Marshall S. Rich\",\"doi\":\"10.3390/analytics2030035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid proliferation of cyberthreats necessitates a robust understanding of their evolution and associated tactics, as found in this study. A longitudinal analysis of these threats was conducted, utilizing a six-year data set obtained from a deception network, which emphasized its significance in the study’s primary aim: the exhaustive exploration of the tactics and strategies utilized by cybercriminals and how these tactics and techniques evolved in sophistication and target specificity over time. Different cyberattack instances were dissected and interpreted, with the patterns behind target selection shown. The focus was on unveiling patterns behind target selection and highlighting recurring techniques and emerging trends. The study’s methodological design incorporated data preprocessing, exploratory data analysis, clustering and anomaly detection, temporal analysis, and cross-referencing. The validation process underscored the reliability and robustness of the findings, providing evidence of increasingly sophisticated, targeted cyberattacks. The work identified three distinct network traffic behavior clusters and temporal attack patterns. A validated scoring mechanism provided a benchmark for network anomalies, applicable for predictive analysis and facilitating comparative study of network behaviors. This benchmarking aids organizations in proactively identifying and responding to potential threats. The study significantly contributed to the cybersecurity discourse, offering insights that could guide the development of more effective defense strategies. The need for further investigation into the nature of detected anomalies was acknowledged, advocating for continuous research and proactive defense strategies in the face of the constantly evolving landscape of cyberthreats.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2030035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正如本研究发现的那样,网络威胁的快速扩散需要对其演变和相关策略有一个强有力的理解。利用从欺骗网络获得的六年数据集,对这些威胁进行了纵向分析,强调了其在研究主要目标中的重要性:详尽探索网络犯罪分子使用的战术和策略,以及这些战术和技术如何随着时间的推移在复杂性和目标特异性方面发展。分析和解释了不同的网络攻击实例,揭示了目标选择背后的模式。重点是揭示目标选择背后的模式,突出重复出现的技术和新兴趋势。该研究的方法设计包括数据预处理、探索性数据分析、聚类和异常检测、时间分析和交叉参考。验证过程强调了研究结果的可靠性和稳健性,为日益复杂、有针对性的网络攻击提供了证据。这项工作确定了三种不同的网络流量行为集群和时间攻击模式。经过验证的评分机制为网络异常提供了一个基准,适用于预测分析,便于网络行为的比较研究。这种基准测试有助于组织主动识别和响应潜在的威胁。该研究对网络安全话语做出了重大贡献,提供了可以指导更有效防御战略发展的见解。我们认识到有必要进一步调查检测到的异常的性质,并主张在面对不断变化的网络威胁时进行持续研究和主动防御策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyberpsychology: A Longitudinal Analysis of Cyber Adversarial Tactics and Techniques
The rapid proliferation of cyberthreats necessitates a robust understanding of their evolution and associated tactics, as found in this study. A longitudinal analysis of these threats was conducted, utilizing a six-year data set obtained from a deception network, which emphasized its significance in the study’s primary aim: the exhaustive exploration of the tactics and strategies utilized by cybercriminals and how these tactics and techniques evolved in sophistication and target specificity over time. Different cyberattack instances were dissected and interpreted, with the patterns behind target selection shown. The focus was on unveiling patterns behind target selection and highlighting recurring techniques and emerging trends. The study’s methodological design incorporated data preprocessing, exploratory data analysis, clustering and anomaly detection, temporal analysis, and cross-referencing. The validation process underscored the reliability and robustness of the findings, providing evidence of increasingly sophisticated, targeted cyberattacks. The work identified three distinct network traffic behavior clusters and temporal attack patterns. A validated scoring mechanism provided a benchmark for network anomalies, applicable for predictive analysis and facilitating comparative study of network behaviors. This benchmarking aids organizations in proactively identifying and responding to potential threats. The study significantly contributed to the cybersecurity discourse, offering insights that could guide the development of more effective defense strategies. The need for further investigation into the nature of detected anomalies was acknowledged, advocating for continuous research and proactive defense strategies in the face of the constantly evolving landscape of cyberthreats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信