关于非对称航天器在大气中下降过程中的吸引-排斥点

V. Lyubimov, V. Lashin
{"title":"关于非对称航天器在大气中下降过程中的吸引-排斥点","authors":"V. Lyubimov, V. Lashin","doi":"10.18287/1613-0073-2017-1904-35-39","DOIUrl":null,"url":null,"abstract":"The aim of this study is to analyze the resonant attractor-repeller points during the atmospheric descent of a spacecraft with small asymmetry. The mathematical simulation of spacecraft rotational motion uses an approximate non-linear system of equations obtained by the method of integral manifolds. Application of the averaging method and the Lyapunov method makes it possible to obtain realization conditions of attractor-repeller points on non-resonance parts of the motion. By analyzing of the said conditions, we have identified specific cases when the principal resonance is either an attractor point or a repeller point.","PeriodicalId":100895,"journal":{"name":"Mathematical Modelling","volume":"53 1","pages":"35-39"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the Attractor-Repeller points during the descent of an asymmetric spacecraft in the atmosphere\",\"authors\":\"V. Lyubimov, V. Lashin\",\"doi\":\"10.18287/1613-0073-2017-1904-35-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to analyze the resonant attractor-repeller points during the atmospheric descent of a spacecraft with small asymmetry. The mathematical simulation of spacecraft rotational motion uses an approximate non-linear system of equations obtained by the method of integral manifolds. Application of the averaging method and the Lyapunov method makes it possible to obtain realization conditions of attractor-repeller points on non-resonance parts of the motion. By analyzing of the said conditions, we have identified specific cases when the principal resonance is either an attractor point or a repeller point.\",\"PeriodicalId\":100895,\"journal\":{\"name\":\"Mathematical Modelling\",\"volume\":\"53 1\",\"pages\":\"35-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2017-1904-35-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2017-1904-35-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是分析具有小不对称的航天器在大气下降过程中的共振吸引-排斥点。航天器旋转运动的数学模拟采用积分流形法得到的近似非线性方程组。应用平均法和李雅普诺夫法,可以得到运动非共振部分的吸引-排斥点的实现条件。通过对上述条件的分析,我们确定了主共振为吸引点或排斥点的具体情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the Attractor-Repeller points during the descent of an asymmetric spacecraft in the atmosphere
The aim of this study is to analyze the resonant attractor-repeller points during the atmospheric descent of a spacecraft with small asymmetry. The mathematical simulation of spacecraft rotational motion uses an approximate non-linear system of equations obtained by the method of integral manifolds. Application of the averaging method and the Lyapunov method makes it possible to obtain realization conditions of attractor-repeller points on non-resonance parts of the motion. By analyzing of the said conditions, we have identified specific cases when the principal resonance is either an attractor point or a repeller point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信