E. Cherotchenko, H. Sigurdsson, Alexis Askitopoulos, A. Nalitov
{"title":"光控极化子凝聚分子","authors":"E. Cherotchenko, H. Sigurdsson, Alexis Askitopoulos, A. Nalitov","doi":"10.1103/PHYSREVB.103.115309","DOIUrl":null,"url":null,"abstract":"A condensed matter platform for analogue simulation of complex two-dimensional molecular bonding configurations, based on optically trapped exciton-polariton condensates is proposed. The stable occupation of polariton condensates in the excited states of their optically configurable potential traps permits emulation of excited atomic orbitals. A classical mean field model describing the dissipative coupling mechanism between p-orbital condensates is derived, identifying lowest threshold condensation solutions as a function of trap parameters corresponding to bound and antibound $\\pi$ and $\\sigma$ bonding configurations, similar to those in quantum chemistry.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optically controlled polariton condensate molecules\",\"authors\":\"E. Cherotchenko, H. Sigurdsson, Alexis Askitopoulos, A. Nalitov\",\"doi\":\"10.1103/PHYSREVB.103.115309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A condensed matter platform for analogue simulation of complex two-dimensional molecular bonding configurations, based on optically trapped exciton-polariton condensates is proposed. The stable occupation of polariton condensates in the excited states of their optically configurable potential traps permits emulation of excited atomic orbitals. A classical mean field model describing the dissipative coupling mechanism between p-orbital condensates is derived, identifying lowest threshold condensation solutions as a function of trap parameters corresponding to bound and antibound $\\\\pi$ and $\\\\sigma$ bonding configurations, similar to those in quantum chemistry.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.115309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.115309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A condensed matter platform for analogue simulation of complex two-dimensional molecular bonding configurations, based on optically trapped exciton-polariton condensates is proposed. The stable occupation of polariton condensates in the excited states of their optically configurable potential traps permits emulation of excited atomic orbitals. A classical mean field model describing the dissipative coupling mechanism between p-orbital condensates is derived, identifying lowest threshold condensation solutions as a function of trap parameters corresponding to bound and antibound $\pi$ and $\sigma$ bonding configurations, similar to those in quantum chemistry.