G. Anglani, P. M. Montanari, Jean Marc Tulliani, G. Lacidogna, P. Antonaci
{"title":"用声发射技术评价嵌入胶凝胶囊的水泥基材料的自愈效果","authors":"G. Anglani, P. M. Montanari, Jean Marc Tulliani, G. Lacidogna, P. Antonaci","doi":"10.1051/matecconf/202337804004","DOIUrl":null,"url":null,"abstract":"Due to its low tensile strength and the presence of defects brought on by improper construction methods or other factors, cracks in concrete are practically inevitable. For reinforced-concrete structures, even if cracks do not necessarily increase the risk of collapse, they unquestionably hinder aspects such as service life. Self-healing cementitious materials have been developed because of growing concern for the security and sustainability of structures. For these new materials to be used in actual structures, it is essential to conduct research into the self-repair effect that they may offer, and possibly quantify it directly on-site, by means of non-destructive methods. In this sense, the objective of this work is to use Acoustic Emission (AE) analyses to non-destructively characterise the response of an autonomic capsule-based system, as a function of the specific polymeric healing agents contained in the capsules. Comparisons will be made between the reference and selfhealing specimens, and between the different self-healing specimens themselves, through the analysis of such parameters as the ultimate load, absorbed fracture energy, and emitted Acoustic Emission (AE) energy. Such type of analysis can give valuable insights not only on quantitative but also on qualitative aspects (such as the level of brittleness or ductility introduced by the specific self-healing system adopted) in view of possible applications in real structures.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the self-healing effect in cement-based materials with embedded cementitious capsules by means of Acoustic Emission techniques\",\"authors\":\"G. Anglani, P. M. Montanari, Jean Marc Tulliani, G. Lacidogna, P. Antonaci\",\"doi\":\"10.1051/matecconf/202337804004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its low tensile strength and the presence of defects brought on by improper construction methods or other factors, cracks in concrete are practically inevitable. For reinforced-concrete structures, even if cracks do not necessarily increase the risk of collapse, they unquestionably hinder aspects such as service life. Self-healing cementitious materials have been developed because of growing concern for the security and sustainability of structures. For these new materials to be used in actual structures, it is essential to conduct research into the self-repair effect that they may offer, and possibly quantify it directly on-site, by means of non-destructive methods. In this sense, the objective of this work is to use Acoustic Emission (AE) analyses to non-destructively characterise the response of an autonomic capsule-based system, as a function of the specific polymeric healing agents contained in the capsules. Comparisons will be made between the reference and selfhealing specimens, and between the different self-healing specimens themselves, through the analysis of such parameters as the ultimate load, absorbed fracture energy, and emitted Acoustic Emission (AE) energy. Such type of analysis can give valuable insights not only on quantitative but also on qualitative aspects (such as the level of brittleness or ductility introduced by the specific self-healing system adopted) in view of possible applications in real structures.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337804004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337804004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of the self-healing effect in cement-based materials with embedded cementitious capsules by means of Acoustic Emission techniques
Due to its low tensile strength and the presence of defects brought on by improper construction methods or other factors, cracks in concrete are practically inevitable. For reinforced-concrete structures, even if cracks do not necessarily increase the risk of collapse, they unquestionably hinder aspects such as service life. Self-healing cementitious materials have been developed because of growing concern for the security and sustainability of structures. For these new materials to be used in actual structures, it is essential to conduct research into the self-repair effect that they may offer, and possibly quantify it directly on-site, by means of non-destructive methods. In this sense, the objective of this work is to use Acoustic Emission (AE) analyses to non-destructively characterise the response of an autonomic capsule-based system, as a function of the specific polymeric healing agents contained in the capsules. Comparisons will be made between the reference and selfhealing specimens, and between the different self-healing specimens themselves, through the analysis of such parameters as the ultimate load, absorbed fracture energy, and emitted Acoustic Emission (AE) energy. Such type of analysis can give valuable insights not only on quantitative but also on qualitative aspects (such as the level of brittleness or ductility introduced by the specific self-healing system adopted) in view of possible applications in real structures.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.