机器学习弥散加权成像预测外伤性脑损伤后癫痫易感性

Akul Sharma, R. Garner, M. Rocca, Celina Alba, Yenlin Lee, K. Yang, Maya Brawer-Cohen, D. Duncan
{"title":"机器学习弥散加权成像预测外伤性脑损伤后癫痫易感性","authors":"Akul Sharma, R. Garner, M. Rocca, Celina Alba, Yenlin Lee, K. Yang, Maya Brawer-Cohen, D. Duncan","doi":"10.23919/ANNSIM52504.2021.9552121","DOIUrl":null,"url":null,"abstract":"Post-traumatic epilepsy (PTE) is a consequence of traumatic brain injury (TBI) and can drastically decrease quality of life. Currently, there is no method available to predict which TBI patients will develop epilepsy. The present study aims to use a machine learning model that can accurately predict the risk of developing PTE from white-matter alterations following trauma. We used diffusion weighted imaging of 39 patients from the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy to analyze fractional anisotropy from a tractography-based analysis. Next, we utilized a Random Forest model to classify seizure outcomes in TBI patients. Our model, assessed with 100 rounds of cross-validation, classified seizure outcome with 61% accuracy. The discrimination between seizure-free and seizure-affected subjects suggests that the classifier could improve characterization and diagnosis of PTE. These results may be instrumental in predicting PTE risk and may be implemented in future research of antiepileptic therapies.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"82 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning of Diffusion Weighted Imaging for Prediction of Seizure Susceptibility Following Traumatic Brain Injury\",\"authors\":\"Akul Sharma, R. Garner, M. Rocca, Celina Alba, Yenlin Lee, K. Yang, Maya Brawer-Cohen, D. Duncan\",\"doi\":\"10.23919/ANNSIM52504.2021.9552121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-traumatic epilepsy (PTE) is a consequence of traumatic brain injury (TBI) and can drastically decrease quality of life. Currently, there is no method available to predict which TBI patients will develop epilepsy. The present study aims to use a machine learning model that can accurately predict the risk of developing PTE from white-matter alterations following trauma. We used diffusion weighted imaging of 39 patients from the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy to analyze fractional anisotropy from a tractography-based analysis. Next, we utilized a Random Forest model to classify seizure outcomes in TBI patients. Our model, assessed with 100 rounds of cross-validation, classified seizure outcome with 61% accuracy. The discrimination between seizure-free and seizure-affected subjects suggests that the classifier could improve characterization and diagnosis of PTE. These results may be instrumental in predicting PTE risk and may be implemented in future research of antiepileptic therapies.\",\"PeriodicalId\":6782,\"journal\":{\"name\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"volume\":\"82 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ANNSIM52504.2021.9552121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

创伤后癫痫(PTE)是创伤性脑损伤(TBI)的后果,可显著降低生活质量。目前,还没有方法可以预测哪些脑外伤患者会发展为癫痫。目前的研究旨在使用一种机器学习模型,该模型可以准确预测创伤后白质改变导致PTE的风险。我们使用来自癫痫生物信息学研究抗癫痫治疗的39例患者的弥散加权成像来分析基于束状图分析的分数各向异性。接下来,我们利用随机森林模型对TBI患者的癫痫发作结果进行分类。我们的模型经过100轮交叉验证,对癫痫发作结果的分类准确率为61%。对无癫痫发作和受癫痫影响受试者的区分表明,该分类器可以提高PTE的特征和诊断,这些结果可能有助于预测PTE的风险,并可能在未来抗癫痫治疗的研究中实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning of Diffusion Weighted Imaging for Prediction of Seizure Susceptibility Following Traumatic Brain Injury
Post-traumatic epilepsy (PTE) is a consequence of traumatic brain injury (TBI) and can drastically decrease quality of life. Currently, there is no method available to predict which TBI patients will develop epilepsy. The present study aims to use a machine learning model that can accurately predict the risk of developing PTE from white-matter alterations following trauma. We used diffusion weighted imaging of 39 patients from the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy to analyze fractional anisotropy from a tractography-based analysis. Next, we utilized a Random Forest model to classify seizure outcomes in TBI patients. Our model, assessed with 100 rounds of cross-validation, classified seizure outcome with 61% accuracy. The discrimination between seizure-free and seizure-affected subjects suggests that the classifier could improve characterization and diagnosis of PTE. These results may be instrumental in predicting PTE risk and may be implemented in future research of antiepileptic therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信