{"title":"湿热环境下智能层合复合材料板的电结构建模及优化振动能量收集","authors":"S. K. Panda, J. Srinivas","doi":"10.1177/1045389X231170697","DOIUrl":null,"url":null,"abstract":"Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"10 1","pages":"2240 - 2256"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electro-structural modeling of smart laminated composite plate under hygrothermal environment for optimum vibration energy harvesting\",\"authors\":\"S. K. Panda, J. Srinivas\",\"doi\":\"10.1177/1045389X231170697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"10 1\",\"pages\":\"2240 - 2256\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231170697\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231170697","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electro-structural modeling of smart laminated composite plate under hygrothermal environment for optimum vibration energy harvesting
Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.