湿热环境下智能层合复合材料板的电结构建模及优化振动能量收集

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. K. Panda, J. Srinivas
{"title":"湿热环境下智能层合复合材料板的电结构建模及优化振动能量收集","authors":"S. K. Panda, J. Srinivas","doi":"10.1177/1045389X231170697","DOIUrl":null,"url":null,"abstract":"Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"10 1","pages":"2240 - 2256"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electro-structural modeling of smart laminated composite plate under hygrothermal environment for optimum vibration energy harvesting\",\"authors\":\"S. K. Panda, J. Srinivas\",\"doi\":\"10.1177/1045389X231170697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"10 1\",\"pages\":\"2240 - 2256\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231170697\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231170697","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

具有压电贴片的智能层合复合材料结构在许多工程领域的振动控制中得到了广泛的应用。基础结构与压电场变量的耦合需要精确的数学模型。本文介绍了复合材料层压基板压电能量采集器在基片激励下的电结构分析与优化研究。考虑了湿热效应,利用Hamilton原理从一阶剪切变形理论推导了耦合的机电方程。利用ritz近似得到了耦合场解,并用三维有限元分析进行了验证。说明了板表面多个压电片拓扑结构对开路电压和位移响应的影响。在此基础上,初步研究了压电贴片尺寸、压电取向、压电贴片尺寸和尖端质量位置对输出功率和效率的影响。为了提高收割机的功率输出和效率,进行了几何变量和材料变量的优化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-structural modeling of smart laminated composite plate under hygrothermal environment for optimum vibration energy harvesting
Smart laminated composite structures with piezoelectric patches are widely used in vibration control applications in several engineering fields. Precise mathematical models are required for the coupling of base structural and piezoelectric field variables. This paper presents the electro-structural analysis and optimization studies of piezoelectric energy harvester with laminated composite substrate plate subjected to base excitations. The coupled electro-mechanical equations are derived from recently proposed first-order shear deformation theory via the Hamilton’s principle by considering hygrothermal effects. The coupled-field solution is obtained from Ritz-approximation and validated with three-dimensional finite element analysis. Effects of multiple piezoelectric patch topologies over the plate surface on the open-circuit voltage and displacement response are illustrated. Furthermore, the influences of piezoelectric-patch sizes, ply-orientation, size, and location of the tip mass are initially studied on the magnitude of output power and efficiency. An optimization study is conducted to identify the geometric and material variables for improvement of the harvester power output and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信