{"title":"纳米颗粒添加剂增强润滑油摩擦学性能的实验研究","authors":"Santhosh, N. Babu","doi":"10.37255/jme.v4i1pp060-065","DOIUrl":null,"url":null,"abstract":"Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using\nexisting lubricant.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATION TO ENHANCE THE TRIBOLOGICAL CHARACTERISTICS OF A LUBRICANT USING NANOPARTICLE ADDITIVE\",\"authors\":\"Santhosh, N. Babu\",\"doi\":\"10.37255/jme.v4i1pp060-065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using\\nexisting lubricant.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v4i1pp060-065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i1pp060-065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
EXPERIMENTAL INVESTIGATION TO ENHANCE THE TRIBOLOGICAL CHARACTERISTICS OF A LUBRICANT USING NANOPARTICLE ADDITIVE
Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using
existing lubricant.