纳米颗粒添加剂增强润滑油摩擦学性能的实验研究

Q4 Engineering
Santhosh, N. Babu
{"title":"纳米颗粒添加剂增强润滑油摩擦学性能的实验研究","authors":"Santhosh, N. Babu","doi":"10.37255/jme.v4i1pp060-065","DOIUrl":null,"url":null,"abstract":"Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using\nexisting lubricant.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATION TO ENHANCE THE TRIBOLOGICAL CHARACTERISTICS OF A LUBRICANT USING NANOPARTICLE ADDITIVE\",\"authors\":\"Santhosh, N. Babu\",\"doi\":\"10.37255/jme.v4i1pp060-065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using\\nexisting lubricant.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v4i1pp060-065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i1pp060-065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

氧化铜纳米颗粒是一种优良的润滑油添加剂,可以减少活塞环与缸套之间的摩擦和磨损。用针盘式机床进行了摩擦磨损试验。每次测试的输入参数如载荷、速度、行驶距离等都是不同的,因此获得了最小摩擦和磨损的有效组合。添加添加剂的效果也可以通过改变润滑油中纳米颗粒的百分比来发现。同样,在润滑油中添加剂的最佳配比选定后,可用于在实验室运行发动机,从而获得使用新润滑油的发动机的性能和排放。最后,与使用现有润滑油的发动机进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPERIMENTAL INVESTIGATION TO ENHANCE THE TRIBOLOGICAL CHARACTERISTICS OF A LUBRICANT USING NANOPARTICLE ADDITIVE
Copper oxide (CuO) nanoparticles were found to be an excellent additive to the lubricant in order to reduce the friction and wear between piston ring and cylinder liner. Friction and wear tests have been done experimentally using a pin on disc machine. Input parameters like load, speed, distance travelled are varied for each test, so that an effective combination for the minimal friction and wear have been obtained. The effect of adding additive is also found by varying the percentage of the nanoparticle in the lubricant. Also, after the best ratio for the additive in lubricant is selected, it can be used to run the engine in the laboratory, so that the performance and emissions of the engine with the new lubricant can be obtained. Finally, comparison can be made with the engine using existing lubricant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信