有限平移尺度Dirichlet混合模型的模型选择与估计

Rua Alsuroji, Nuha Zamzami, N. Bouguila
{"title":"有限平移尺度Dirichlet混合模型的模型选择与估计","authors":"Rua Alsuroji, Nuha Zamzami, N. Bouguila","doi":"10.1109/ICMLA.2018.00112","DOIUrl":null,"url":null,"abstract":"This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees' absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"9 1","pages":"707-713"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model\",\"authors\":\"Rua Alsuroji, Nuha Zamzami, N. Bouguila\",\"doi\":\"10.1109/ICMLA.2018.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees' absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"9 1\",\"pages\":\"707-713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种位移尺度狄利克雷分布有限混合模型的无监督学习算法。最大似然法和牛顿法用于参数估计。在这项研究工作中,我们通过添加函数概率模型的另一组位置参数(除了Scale参数)来解决Dirichlet分布的灵活性挑战。本文评估了所讨论的模型的分类能力,使用与医学相关的合成和真实数据来帮助选择疣的治疗方法,在商业领域检测员工缺勤背后的原因,以及作者识别应用程序来定义离线手写文档的作者。我们还比较了模型与缩放狄利克雷模型、经典狄利克雷模型和高斯混合模型的性能。最后,在选取的数据集上给出了实验结果。此外,我们应用最小消息长度来确定每个数据集中发现的组件的最佳数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model
This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees' absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信