科学数据来源的时态表示

Peng Chen, Beth Plale, M. Aktaş
{"title":"科学数据来源的时态表示","authors":"Peng Chen, Beth Plale, M. Aktaş","doi":"10.1109/eScience.2012.6404477","DOIUrl":null,"url":null,"abstract":"Provenance of digital scientific data is an important piece of the metadata of a data object. It can however grow voluminous quickly because the granularity level of capture can be high. It can also be quite feature rich. We propose a representation of the provenance data based on logical time that reduces the feature space. Creating time and frequency domain representations of the provenance, we apply clustering, classification and association rule mining to the abstract representations to determine the usefulness of the temporal representation. We evaluate the temporal representation using an existing 10 GB database of provenance captured from a range of scientific workflows.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Temporal representation for scientific data provenance\",\"authors\":\"Peng Chen, Beth Plale, M. Aktaş\",\"doi\":\"10.1109/eScience.2012.6404477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Provenance of digital scientific data is an important piece of the metadata of a data object. It can however grow voluminous quickly because the granularity level of capture can be high. It can also be quite feature rich. We propose a representation of the provenance data based on logical time that reduces the feature space. Creating time and frequency domain representations of the provenance, we apply clustering, classification and association rule mining to the abstract representations to determine the usefulness of the temporal representation. We evaluate the temporal representation using an existing 10 GB database of provenance captured from a range of scientific workflows.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

数字科学数据的来源是数据对象元数据的重要组成部分。但是,由于捕获的粒度级别可能很高,因此它可以快速增长。它也可以是相当丰富的功能。提出了一种基于逻辑时间的来源数据表示方法,减少了特征空间。我们创建了来源的时域和频域表示,并对抽象表示应用聚类、分类和关联规则挖掘来确定时间表示的有用性。我们使用从一系列科学工作流程中捕获的现有的10gb来源数据库来评估时间表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal representation for scientific data provenance
Provenance of digital scientific data is an important piece of the metadata of a data object. It can however grow voluminous quickly because the granularity level of capture can be high. It can also be quite feature rich. We propose a representation of the provenance data based on logical time that reduces the feature space. Creating time and frequency domain representations of the provenance, we apply clustering, classification and association rule mining to the abstract representations to determine the usefulness of the temporal representation. We evaluate the temporal representation using an existing 10 GB database of provenance captured from a range of scientific workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信