认知-情感用户状态意识的概率模型

Santiago Fernández, Ignacio Lazaro, Eduardo Gilabert, A. Arnaiz, Francisco Munoz Munoz, Luis Castellanos
{"title":"认知-情感用户状态意识的概率模型","authors":"Santiago Fernández, Ignacio Lazaro, Eduardo Gilabert, A. Arnaiz, Francisco Munoz Munoz, Luis Castellanos","doi":"10.1109/INDIN.2013.6622980","DOIUrl":null,"url":null,"abstract":"In this work we describe a cognitive model to infer the more likely user's states in data-intensive contexts. Stress, mental fatigue, or even inaptitude, are selected to be inferred by the model based two sources of information: context and psycho-physiological sensors network. As long as a complex, high demanding context will predict those cognitive states that, in turn, will be diagnosed by the set of sensors (EEG and ECG). All these input variables are represented in a probabilistic model in which links are defined based on the literature. The outcome of the model is a probability of being inapt to perform in a suitable way. In case of inaptitude, assistance should be delivered to the user to normalize the current user's state.","PeriodicalId":6312,"journal":{"name":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","volume":"7 1","pages":"762-767"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A probabilistic model for cognitive-affective user state awareness\",\"authors\":\"Santiago Fernández, Ignacio Lazaro, Eduardo Gilabert, A. Arnaiz, Francisco Munoz Munoz, Luis Castellanos\",\"doi\":\"10.1109/INDIN.2013.6622980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we describe a cognitive model to infer the more likely user's states in data-intensive contexts. Stress, mental fatigue, or even inaptitude, are selected to be inferred by the model based two sources of information: context and psycho-physiological sensors network. As long as a complex, high demanding context will predict those cognitive states that, in turn, will be diagnosed by the set of sensors (EEG and ECG). All these input variables are represented in a probabilistic model in which links are defined based on the literature. The outcome of the model is a probability of being inapt to perform in a suitable way. In case of inaptitude, assistance should be delivered to the user to normalize the current user's state.\",\"PeriodicalId\":6312,\"journal\":{\"name\":\"2013 11th IEEE International Conference on Industrial Informatics (INDIN)\",\"volume\":\"7 1\",\"pages\":\"762-767\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th IEEE International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2013.6622980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2013.6622980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们描述了一个认知模型来推断数据密集型环境中更可能的用户状态。压力,精神疲劳,甚至无能,被选择来推断模型基于两个信息来源:环境和心理生理传感器网络。只要一个复杂的、高要求的环境能够预测这些认知状态,而这些认知状态又会被一组传感器(脑电图和心电图)诊断出来。所有这些输入变量都在一个概率模型中表示,其中链接是根据文献定义的。模型的结果是不能以合适的方式执行的概率。在不合适的情况下,应该向用户提供帮助,使当前用户的状态正常化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic model for cognitive-affective user state awareness
In this work we describe a cognitive model to infer the more likely user's states in data-intensive contexts. Stress, mental fatigue, or even inaptitude, are selected to be inferred by the model based two sources of information: context and psycho-physiological sensors network. As long as a complex, high demanding context will predict those cognitive states that, in turn, will be diagnosed by the set of sensors (EEG and ECG). All these input variables are represented in a probabilistic model in which links are defined based on the literature. The outcome of the model is a probability of being inapt to perform in a suitable way. In case of inaptitude, assistance should be delivered to the user to normalize the current user's state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信