利用综合数学模型评价恶臭假单胞菌LY1对苯酚的生长动力学

Abubakar Aisami, M. M. Usman
{"title":"利用综合数学模型评价恶臭假单胞菌LY1对苯酚的生长动力学","authors":"Abubakar Aisami, M. M. Usman","doi":"10.54987/jobimb.v8i1.507","DOIUrl":null,"url":null,"abstract":"Kinetic equations, which explain the behaviour of a microbe or an enzyme towards a specific substrate, are key to understanding many phenomena in biotechnological processes. They facilitate the mathematical prediction of growth parameters essential for the identification of key growth control parameters. We remodelled Banerjee and Ghoshal's published research (Banerjee and Ghoshal 2010) using some more kinetic growth models, such as Monod, Teissier, Andrews and Noack, Hinshelwood, Moser, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel and Luong used statistical methods such as Root Mean Square (RMSE), Adjusted Coefficient of Determination ( R2), corrected Akaike Information Criterion (AICc), Bias Factor, Accuracy Factor  to determine the accuracy of the fitted model. The best model was Haldane with the true value of max determined as the value where the gradient for the slope is zero was 0.115 h-1 at 51 mg/L phenol. The results indicate that the exhaustive use of mathematical models on available published results could gleam new optimal models that can provide new knowledge on the way toxic substance inhibits growth rate in microbes.","PeriodicalId":15132,"journal":{"name":"Journal of Biochemistry, Microbiology and Biotechnology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Utilization of Comprehensive Mathematical Modelling to Evaluate the Growth Kinetics of Pseudomonas putida LY1 on Phenol\",\"authors\":\"Abubakar Aisami, M. M. Usman\",\"doi\":\"10.54987/jobimb.v8i1.507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic equations, which explain the behaviour of a microbe or an enzyme towards a specific substrate, are key to understanding many phenomena in biotechnological processes. They facilitate the mathematical prediction of growth parameters essential for the identification of key growth control parameters. We remodelled Banerjee and Ghoshal's published research (Banerjee and Ghoshal 2010) using some more kinetic growth models, such as Monod, Teissier, Andrews and Noack, Hinshelwood, Moser, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel and Luong used statistical methods such as Root Mean Square (RMSE), Adjusted Coefficient of Determination ( R2), corrected Akaike Information Criterion (AICc), Bias Factor, Accuracy Factor  to determine the accuracy of the fitted model. The best model was Haldane with the true value of max determined as the value where the gradient for the slope is zero was 0.115 h-1 at 51 mg/L phenol. The results indicate that the exhaustive use of mathematical models on available published results could gleam new optimal models that can provide new knowledge on the way toxic substance inhibits growth rate in microbes.\",\"PeriodicalId\":15132,\"journal\":{\"name\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54987/jobimb.v8i1.507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemistry, Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/jobimb.v8i1.507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动力学方程解释了微生物或酶对特定底物的行为,是理解生物技术过程中许多现象的关键。它们有助于对生长参数的数学预测,这对确定关键的生长控制参数至关重要。我们对Banerjee和Ghoshal发表的研究(Banerjee和Ghoshal 2010)进行了重新建模,使用了一些更具动力学的增长模型,如Monod、Teissier、Andrews和Noack、Hinshelwood、Moser、Aiba、Webb (Edward)、Yano和Koga、Han和Levenspiel和Luong,使用了均方根(RMSE)、调整决定系数(R2)、修正的Akaike信息标准(AICc)、偏差因子、精度因子等统计方法来确定拟合模型的准确性。当苯酚浓度为51 mg/L时,以斜率为零的梯度值为0.115 h-1为确定的真实值ï′-max为最佳模型。结果表明,在现有的已发表的结果上详尽地使用数学模型可以提供新的优化模型,可以为有毒物质抑制微生物生长速度的方式提供新的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of Comprehensive Mathematical Modelling to Evaluate the Growth Kinetics of Pseudomonas putida LY1 on Phenol
Kinetic equations, which explain the behaviour of a microbe or an enzyme towards a specific substrate, are key to understanding many phenomena in biotechnological processes. They facilitate the mathematical prediction of growth parameters essential for the identification of key growth control parameters. We remodelled Banerjee and Ghoshal's published research (Banerjee and Ghoshal 2010) using some more kinetic growth models, such as Monod, Teissier, Andrews and Noack, Hinshelwood, Moser, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel and Luong used statistical methods such as Root Mean Square (RMSE), Adjusted Coefficient of Determination ( R2), corrected Akaike Information Criterion (AICc), Bias Factor, Accuracy Factor  to determine the accuracy of the fitted model. The best model was Haldane with the true value of max determined as the value where the gradient for the slope is zero was 0.115 h-1 at 51 mg/L phenol. The results indicate that the exhaustive use of mathematical models on available published results could gleam new optimal models that can provide new knowledge on the way toxic substance inhibits growth rate in microbes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信