基于随机oxrram时间序列机器学习的步态识别

R. Degraeve, J. Doevenspeck, A. Fantini, P. Debacker, D. Linten, D. Verkest
{"title":"基于随机oxrram时间序列机器学习的步态识别","authors":"R. Degraeve, J. Doevenspeck, A. Fantini, P. Debacker, D. Linten, D. Verkest","doi":"10.23919/VLSIT.2019.8776571","DOIUrl":null,"url":null,"abstract":"The way a person walks, i.e. his/her gait, can be as unique as a fingerprint. With portable accelerometers and/or gyroscopes available in present-day smartphones, gait verification and identification can be exploited for low-level security [1]. Achieving this requires machine learning of a time sequence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"10 1","pages":"T84-T85"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gait identification using stochastic OXRRAM-based time sequence machine learning\",\"authors\":\"R. Degraeve, J. Doevenspeck, A. Fantini, P. Debacker, D. Linten, D. Verkest\",\"doi\":\"10.23919/VLSIT.2019.8776571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The way a person walks, i.e. his/her gait, can be as unique as a fingerprint. With portable accelerometers and/or gyroscopes available in present-day smartphones, gait verification and identification can be exploited for low-level security [1]. Achieving this requires machine learning of a time sequence.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"10 1\",\"pages\":\"T84-T85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个人走路的方式,也就是他/她的步态,可以像指纹一样独一无二。随着便携式加速度计和/或陀螺仪在当今的智能手机中可用,步态验证和识别可以用于低级安全[1]。要做到这一点,需要对时间序列进行机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait identification using stochastic OXRRAM-based time sequence machine learning
The way a person walks, i.e. his/her gait, can be as unique as a fingerprint. With portable accelerometers and/or gyroscopes available in present-day smartphones, gait verification and identification can be exploited for low-level security [1]. Achieving this requires machine learning of a time sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信