非牛顿流体流动有限差分-渐近混合插值法的理论误差分析

S. Mahadi, S. Yeak, N. Arbin, F. Salah
{"title":"非牛顿流体流动有限差分-渐近混合插值法的理论误差分析","authors":"S. Mahadi, S. Yeak, N. Arbin, F. Salah","doi":"10.1155/2023/9920157","DOIUrl":null,"url":null,"abstract":"In this paper, we utilized a hybrid method for the unsteady flow of the non-Newtonian third-grade fluid that combines the finite difference with the asymptotic interpolation method. This hybrid method is used to satisfy the semiunbound domain condition of the fluid flow’s length approaching infinity. The primary issue with this research is how much of the hybrid approach’s error may be accepted to guarantee that the method is significant. This paper discussed theoretical error analysis for numerical solutions, including the range and norm of error. The perturbation method’s concept is used to assess the hybrid method’s error. It is discovered that the hybrid approach’s relative error norm is lower than that of the finite difference method. In terms of the error standard, the hybrid approach is more consistent. Error analysis is performed to check for the accuracy as well as the platform for variable mesh size finite difference method in the future research.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"16 1","pages":"9920157:1-9920157:9"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Error Analysis of Hybrid Finite Difference-Asymptotic Interpolation Method for Non-Newtonian Fluid Flow\",\"authors\":\"S. Mahadi, S. Yeak, N. Arbin, F. Salah\",\"doi\":\"10.1155/2023/9920157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we utilized a hybrid method for the unsteady flow of the non-Newtonian third-grade fluid that combines the finite difference with the asymptotic interpolation method. This hybrid method is used to satisfy the semiunbound domain condition of the fluid flow’s length approaching infinity. The primary issue with this research is how much of the hybrid approach’s error may be accepted to guarantee that the method is significant. This paper discussed theoretical error analysis for numerical solutions, including the range and norm of error. The perturbation method’s concept is used to assess the hybrid method’s error. It is discovered that the hybrid approach’s relative error norm is lower than that of the finite difference method. In terms of the error standard, the hybrid approach is more consistent. Error analysis is performed to check for the accuracy as well as the platform for variable mesh size finite difference method in the future research.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"16 1\",\"pages\":\"9920157:1-9920157:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9920157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9920157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有限差分法与渐近插值法相结合的混合方法求解非牛顿三阶流体的非定常流动。该混合方法用于满足流体流动长度趋近于无穷长的半无界域条件。本研究的主要问题是混合方法的误差在多大程度上可以被接受,以保证该方法是显著的。本文讨论了数值解的理论误差分析,包括误差范围和范数。采用摄动法的概念对混合方法的误差进行了评估。结果表明,混合方法的相对误差范数低于有限差分法。在误差标准方面,混合方法更加一致。通过误差分析,验证了变网格有限差分法的精度,为今后的研究提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Error Analysis of Hybrid Finite Difference-Asymptotic Interpolation Method for Non-Newtonian Fluid Flow
In this paper, we utilized a hybrid method for the unsteady flow of the non-Newtonian third-grade fluid that combines the finite difference with the asymptotic interpolation method. This hybrid method is used to satisfy the semiunbound domain condition of the fluid flow’s length approaching infinity. The primary issue with this research is how much of the hybrid approach’s error may be accepted to guarantee that the method is significant. This paper discussed theoretical error analysis for numerical solutions, including the range and norm of error. The perturbation method’s concept is used to assess the hybrid method’s error. It is discovered that the hybrid approach’s relative error norm is lower than that of the finite difference method. In terms of the error standard, the hybrid approach is more consistent. Error analysis is performed to check for the accuracy as well as the platform for variable mesh size finite difference method in the future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信