带小迹的全正代数整数

Congjie Wang, Jie Wu, Qiang Wu
{"title":"带小迹的全正代数整数","authors":"Congjie Wang, Jie Wu, Qiang Wu","doi":"10.1090/MCOM/3636","DOIUrl":null,"url":null,"abstract":"The “Schur-Siegel-Smyth trace problem” is a famous open problem that has existed for nearly 100 years. To study this problem with the known methods, we need to find all totally positive algebraic integers with small trace. In this work, on the basis of the classical algorithm, we construct a new type of explicit auxiliary functions related to Chebyshev polynomials to give better bounds for \n\n \n \n S\n k\n \n S_k\n \n\n, and reduce sharply the computing time. We are then able to push the computation to degree \n\n \n 15\n 15\n \n\n and prove that there is no such totally positive algebraic integer with absolute trace \n\n \n 1.8\n 1.8\n \n\n. As an application, we improve the lower bound for the absolute trace of totally positive algebraic integers to \n\n \n \n 1.793145\n ⋯\n \n 1.793145\\cdots\n \n\n.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Totally positive algebraic integers with small trace\",\"authors\":\"Congjie Wang, Jie Wu, Qiang Wu\",\"doi\":\"10.1090/MCOM/3636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The “Schur-Siegel-Smyth trace problem” is a famous open problem that has existed for nearly 100 years. To study this problem with the known methods, we need to find all totally positive algebraic integers with small trace. In this work, on the basis of the classical algorithm, we construct a new type of explicit auxiliary functions related to Chebyshev polynomials to give better bounds for \\n\\n \\n \\n S\\n k\\n \\n S_k\\n \\n\\n, and reduce sharply the computing time. We are then able to push the computation to degree \\n\\n \\n 15\\n 15\\n \\n\\n and prove that there is no such totally positive algebraic integer with absolute trace \\n\\n \\n 1.8\\n 1.8\\n \\n\\n. As an application, we improve the lower bound for the absolute trace of totally positive algebraic integers to \\n\\n \\n \\n 1.793145\\n ⋯\\n \\n 1.793145\\\\cdots\\n \\n\\n.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

“Schur-Siegel-Smyth迹问题”是一个存在了近100年的著名开放问题。为了用已知的方法研究这个问题,我们需要找到所有带小迹的全正代数整数。本文在经典算法的基础上,构造了一种新的与Chebyshev多项式相关的显式辅助函数,给出了S k S_k更好的界,大大减少了计算时间。然后,我们能够将计算推到15次15次,并证明不存在绝对迹为1.8 1.8的完全正代数整数。作为一个应用,我们将完全正代数整数的绝对迹的下界改进为1.793145⋯1.793145\cdots。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Totally positive algebraic integers with small trace
The “Schur-Siegel-Smyth trace problem” is a famous open problem that has existed for nearly 100 years. To study this problem with the known methods, we need to find all totally positive algebraic integers with small trace. In this work, on the basis of the classical algorithm, we construct a new type of explicit auxiliary functions related to Chebyshev polynomials to give better bounds for S k S_k , and reduce sharply the computing time. We are then able to push the computation to degree 15 15 and prove that there is no such totally positive algebraic integer with absolute trace 1.8 1.8 . As an application, we improve the lower bound for the absolute trace of totally positive algebraic integers to 1.793145 ⋯ 1.793145\cdots .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信