分裂变分不等式系统的强适定性

Pub Date : 2020-11-01 DOI:10.36045/j.bbms.190912
M. Shams, M. Oveisiha, A. Abkar
{"title":"分裂变分不等式系统的强适定性","authors":"M. Shams, M. Oveisiha, A. Abkar","doi":"10.36045/j.bbms.190912","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a generalization of well-posedness for a class of split multi-valued variational inequalities and establish some metric characterizations for them. Moreover, we show that the existence and uniqueness of solution for a split multi-valued variational inequality is equivalent to the strong well-posedness.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Strong well-posedness of a system of split variational inequalities\",\"authors\":\"M. Shams, M. Oveisiha, A. Abkar\",\"doi\":\"10.36045/j.bbms.190912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a generalization of well-posedness for a class of split multi-valued variational inequalities and establish some metric characterizations for them. Moreover, we show that the existence and uniqueness of solution for a split multi-valued variational inequality is equivalent to the strong well-posedness.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.190912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.190912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文考虑了一类分裂多值变分不等式的适定性的推广,并建立了它们的度量刻画。此外,我们还证明了分裂多值变分不等式解的存在唯一性等价于强适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong well-posedness of a system of split variational inequalities
In this paper, we consider a generalization of well-posedness for a class of split multi-valued variational inequalities and establish some metric characterizations for them. Moreover, we show that the existence and uniqueness of solution for a split multi-valued variational inequality is equivalent to the strong well-posedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信