{"title":"具有机械约束的化学-机械耦合电池活性颗粒循环变形模拟","authors":"R. Schoof, G. Castelli, W. Dörfler","doi":"10.48550/arXiv.2302.07786","DOIUrl":null,"url":null,"abstract":"Next-generation lithium-ion batteries with silicon anodes have positive characteristics due to higher energy densities compared to state-of-the-art graphite anodes. However, the large volume expansion of silicon anodes can cause high mechanical stresses, especially if the battery active particle cannot expand freely. In this article, a thermodynamically consistent continuum model for coupling chemical and mechanical effects of electrode particles is extended by a change in the boundary condition for the displacement via a variational inequality. This switch represents a limited enlargement of the particle swelling or shrinking due to lithium intercalation or deintercalation in the host material, respectively. For inequality constraints as boundary condition a smaller time step size is need as well as a locally finer mesh. The combination of a primal-dual active set algorithm, interpreted as semismooth Newton method, and a spatial and temporal adaptive algorithm allows the efficient numerical investigation based on a finite element method. Using the example of silicon, the chemical and mechanical behavior of one- and two-dimensional representative geometries for a charge-discharge cycle is investigated. Furthermore, the efficiency of the adaptive algorithm is demonstrated. It turns out that the size of the gap has a significant influence on the maximal stress value and the slope of the increase. Especially in two dimension, the obstacle can cause an additional region with a lithium-poor phase.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of the Deformation for Cycling Chemo-Mechanically Coupled Battery Active Particles with Mechanical Constraints\",\"authors\":\"R. Schoof, G. Castelli, W. Dörfler\",\"doi\":\"10.48550/arXiv.2302.07786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next-generation lithium-ion batteries with silicon anodes have positive characteristics due to higher energy densities compared to state-of-the-art graphite anodes. However, the large volume expansion of silicon anodes can cause high mechanical stresses, especially if the battery active particle cannot expand freely. In this article, a thermodynamically consistent continuum model for coupling chemical and mechanical effects of electrode particles is extended by a change in the boundary condition for the displacement via a variational inequality. This switch represents a limited enlargement of the particle swelling or shrinking due to lithium intercalation or deintercalation in the host material, respectively. For inequality constraints as boundary condition a smaller time step size is need as well as a locally finer mesh. The combination of a primal-dual active set algorithm, interpreted as semismooth Newton method, and a spatial and temporal adaptive algorithm allows the efficient numerical investigation based on a finite element method. Using the example of silicon, the chemical and mechanical behavior of one- and two-dimensional representative geometries for a charge-discharge cycle is investigated. Furthermore, the efficiency of the adaptive algorithm is demonstrated. It turns out that the size of the gap has a significant influence on the maximal stress value and the slope of the increase. Especially in two dimension, the obstacle can cause an additional region with a lithium-poor phase.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.07786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.07786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of the Deformation for Cycling Chemo-Mechanically Coupled Battery Active Particles with Mechanical Constraints
Next-generation lithium-ion batteries with silicon anodes have positive characteristics due to higher energy densities compared to state-of-the-art graphite anodes. However, the large volume expansion of silicon anodes can cause high mechanical stresses, especially if the battery active particle cannot expand freely. In this article, a thermodynamically consistent continuum model for coupling chemical and mechanical effects of electrode particles is extended by a change in the boundary condition for the displacement via a variational inequality. This switch represents a limited enlargement of the particle swelling or shrinking due to lithium intercalation or deintercalation in the host material, respectively. For inequality constraints as boundary condition a smaller time step size is need as well as a locally finer mesh. The combination of a primal-dual active set algorithm, interpreted as semismooth Newton method, and a spatial and temporal adaptive algorithm allows the efficient numerical investigation based on a finite element method. Using the example of silicon, the chemical and mechanical behavior of one- and two-dimensional representative geometries for a charge-discharge cycle is investigated. Furthermore, the efficiency of the adaptive algorithm is demonstrated. It turns out that the size of the gap has a significant influence on the maximal stress value and the slope of the increase. Especially in two dimension, the obstacle can cause an additional region with a lithium-poor phase.