平面Voronoi马赛克的细胞面积分布

H. Hermann , H. Wendrock , D. Stoyan
{"title":"平面Voronoi马赛克的细胞面积分布","authors":"H. Hermann ,&nbsp;H. Wendrock ,&nbsp;D. Stoyan","doi":"10.1016/0026-0800(89)90030-X","DOIUrl":null,"url":null,"abstract":"<div><p>Poisson, hard-core, and cluster point fields are used to generate numerically planar Voronoi (Dirichlet) mosaics. Type and parameter values of the point fields are closely related to the parameters of the corresponding mosaic cell-area distribution. These relationships are described quantitatively by two-dimensional parameter diagrams. The properties of a given empirical mosaic can be clearly explained by estimating a parameter set of its cell-area distribution and placing it in the corresponding parameter diagram.</p></div>","PeriodicalId":100918,"journal":{"name":"Metallography","volume":"23 3","pages":"Pages 189-200"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0026-0800(89)90030-X","citationCount":"32","resultStr":"{\"title\":\"Cell-area distributions of planar Voronoi mosaics\",\"authors\":\"H. Hermann ,&nbsp;H. Wendrock ,&nbsp;D. Stoyan\",\"doi\":\"10.1016/0026-0800(89)90030-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poisson, hard-core, and cluster point fields are used to generate numerically planar Voronoi (Dirichlet) mosaics. Type and parameter values of the point fields are closely related to the parameters of the corresponding mosaic cell-area distribution. These relationships are described quantitatively by two-dimensional parameter diagrams. The properties of a given empirical mosaic can be clearly explained by estimating a parameter set of its cell-area distribution and placing it in the corresponding parameter diagram.</p></div>\",\"PeriodicalId\":100918,\"journal\":{\"name\":\"Metallography\",\"volume\":\"23 3\",\"pages\":\"Pages 189-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0026-0800(89)90030-X\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/002608008990030X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002608008990030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

泊松、硬核和聚类点场用于生成数值平面Voronoi (Dirichlet)马赛克。点场的类型和参数值与相应的马赛克单元面积分布参数密切相关。用二维参数图定量地描述了这些关系。给定经验马赛克的性质可以通过估计其单元面积分布的参数集并将其放入相应的参数图中来清楚地解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell-area distributions of planar Voronoi mosaics

Poisson, hard-core, and cluster point fields are used to generate numerically planar Voronoi (Dirichlet) mosaics. Type and parameter values of the point fields are closely related to the parameters of the corresponding mosaic cell-area distribution. These relationships are described quantitatively by two-dimensional parameter diagrams. The properties of a given empirical mosaic can be clearly explained by estimating a parameter set of its cell-area distribution and placing it in the corresponding parameter diagram.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信