{"title":"感应真空炉重熔铜液中砷的去除","authors":"J. Łabaj, L. Blacha, A. Smalcerz, B. Chmiela","doi":"10.2298/jmmb210108033l","DOIUrl":null,"url":null,"abstract":"Using a reduced pressure during the smelting and refining of alloys removes dissolved gasses, as well as impurities with a high vapor pressure. When smelting is carried out in vacuum induction furnaces, the intensification of the discussed processes is achieved by intensive mixing of the bath, as well as an enhanced mass exchange surface (liquid metal surface) due to the formation of a meniscus. This is due to the electromagnetic field applied to the liquid metal. This study reports the removal of arsenic from blister copper via refining in an induction vacuum furnace in the temperature range of 1423-1523 K, at operating pressures from 8 to 1333 Pa. The overall mass transfer coefficient kAs determined from the experimental data ranged from 9.99?10-7 to 1.65?10-5 ms-1. Arsenic elimination was largely controlled by mass transfer in the gas phase. The kinetic analysis indicated that the arsenic evaporation rate was controlled by the combination of both liquid and gas-phase mass transfer only at a pressure of 8 Pa.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of arsenic from liquid blister copper during remelting in an induction vacuum furnace\",\"authors\":\"J. Łabaj, L. Blacha, A. Smalcerz, B. Chmiela\",\"doi\":\"10.2298/jmmb210108033l\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a reduced pressure during the smelting and refining of alloys removes dissolved gasses, as well as impurities with a high vapor pressure. When smelting is carried out in vacuum induction furnaces, the intensification of the discussed processes is achieved by intensive mixing of the bath, as well as an enhanced mass exchange surface (liquid metal surface) due to the formation of a meniscus. This is due to the electromagnetic field applied to the liquid metal. This study reports the removal of arsenic from blister copper via refining in an induction vacuum furnace in the temperature range of 1423-1523 K, at operating pressures from 8 to 1333 Pa. The overall mass transfer coefficient kAs determined from the experimental data ranged from 9.99?10-7 to 1.65?10-5 ms-1. Arsenic elimination was largely controlled by mass transfer in the gas phase. The kinetic analysis indicated that the arsenic evaporation rate was controlled by the combination of both liquid and gas-phase mass transfer only at a pressure of 8 Pa.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb210108033l\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210108033l","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Removal of arsenic from liquid blister copper during remelting in an induction vacuum furnace
Using a reduced pressure during the smelting and refining of alloys removes dissolved gasses, as well as impurities with a high vapor pressure. When smelting is carried out in vacuum induction furnaces, the intensification of the discussed processes is achieved by intensive mixing of the bath, as well as an enhanced mass exchange surface (liquid metal surface) due to the formation of a meniscus. This is due to the electromagnetic field applied to the liquid metal. This study reports the removal of arsenic from blister copper via refining in an induction vacuum furnace in the temperature range of 1423-1523 K, at operating pressures from 8 to 1333 Pa. The overall mass transfer coefficient kAs determined from the experimental data ranged from 9.99?10-7 to 1.65?10-5 ms-1. Arsenic elimination was largely controlled by mass transfer in the gas phase. The kinetic analysis indicated that the arsenic evaporation rate was controlled by the combination of both liquid and gas-phase mass transfer only at a pressure of 8 Pa.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.