工程机械液压机械驱动的节能动力分流混合传动系统

IF 1.3 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
M. Bertolin, A. Vacca
{"title":"工程机械液压机械驱动的节能动力分流混合传动系统","authors":"M. Bertolin, A. Vacca","doi":"10.1115/1.4051035","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement-controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing, and power-management are addressed. Simulation results considering a realistic truck-loading cycle on a mini-excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series–parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original nonhybrid load-sensing (LS) machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series–parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which open to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"91 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Energy Efficient Power-Split Hybrid Transmission System to Drive Hydraulic Implements in Construction Machines\",\"authors\":\"M. Bertolin, A. Vacca\",\"doi\":\"10.1115/1.4051035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement-controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing, and power-management are addressed. Simulation results considering a realistic truck-loading cycle on a mini-excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series–parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original nonhybrid load-sensing (LS) machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series–parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which open to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4051035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种用于工程机械液压传动的新型混合动力分路传动。高效的动力分流混合动力传动与位移控制(DC)执行器相结合,消除了液压系统中的节流损失,并实现了更高的燃油节约。讨论了体系结构设计、大小调整和电源管理。以小型挖掘机为例,仿真结果验证了该方法的可行性。本文还对所提出的系统与先前开发的串并联混合动力系统进行了系统比较。本文将上述混合动力系统与原始非混合负载敏感(LS)机的发动机运行和油耗进行了比较。结果表明,通过实现高效的发动机运行控制,与原始机器相比,所提出的系统可实现高达60.2%的燃油消耗改善,比先前开发的直流驱动串并联混合动力系统节省11.8%的燃油消耗。该解决方案的其他优点还包括发动机运行更加稳定,这为在单个工作点设计最佳消耗和排放的发动机以及大大减少污染物排放提供了可能。一个更稳定的原动机运行也应该有利于全电动机器,因为电池不会受到重瞬变的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Efficient Power-Split Hybrid Transmission System to Drive Hydraulic Implements in Construction Machines
This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement-controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing, and power-management are addressed. Simulation results considering a realistic truck-loading cycle on a mini-excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series–parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original nonhybrid load-sensing (LS) machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series–parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which open to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信