粘土/SEBS插层复合材料的制备及性能研究

T. Yamaguchi, E. Yamada
{"title":"粘土/SEBS插层复合材料的制备及性能研究","authors":"T. Yamaguchi, E. Yamada","doi":"10.2324/EJSM.2.1","DOIUrl":null,"url":null,"abstract":"Clay/polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymer (SEBS) intercalated composites were prepared by melt-blending. The clays were a pristine montmorillonite (Mt) and three organically modified montmorillonites (organo-Mts) with different amounts of distearyldimethylammonium (D18) cation. The amounts of D18 were 50, 70 and 100% of the cation exchange capacity (denoted as D18Mt(50), D18Mt(70) and D18Mt(100), respectively). The clay/SEBS composites were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD). The dynamic mechanical analysis (DMA) and the tensile properties were also examined.The size of agglomerated clay particles decreased with the increasing amount of D18. The FE-SEM image of D18Mt(100)/SEBS revealed that the clay particles were dispersed at the sub-μm level (100–500 nm). The XRD patterns suggested that the SEBS chains were inserted into the interlayers of the organo-Mts. The DMA curves indicated that the addition of the organo-Mts produced an increase in the storage modulus in the rubbery plateau region, but a slight decrease in the glass transition temperature of the polystyrene domains. The tensile properties of the organo-Mt/SEBS composites were higher than those of the unmodified Mt/SEBS. D18Mt(100)/SEBS displayed an improved tensile modulus, tear strength and hardness compared to pure SEBS, without sacrificing the tensile strength and elongation at break.","PeriodicalId":11628,"journal":{"name":"E-journal of Soft Materials","volume":"13 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preparation and Properties of Clay/SEBS Intercalated Composites\",\"authors\":\"T. Yamaguchi, E. Yamada\",\"doi\":\"10.2324/EJSM.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clay/polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymer (SEBS) intercalated composites were prepared by melt-blending. The clays were a pristine montmorillonite (Mt) and three organically modified montmorillonites (organo-Mts) with different amounts of distearyldimethylammonium (D18) cation. The amounts of D18 were 50, 70 and 100% of the cation exchange capacity (denoted as D18Mt(50), D18Mt(70) and D18Mt(100), respectively). The clay/SEBS composites were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD). The dynamic mechanical analysis (DMA) and the tensile properties were also examined.The size of agglomerated clay particles decreased with the increasing amount of D18. The FE-SEM image of D18Mt(100)/SEBS revealed that the clay particles were dispersed at the sub-μm level (100–500 nm). The XRD patterns suggested that the SEBS chains were inserted into the interlayers of the organo-Mts. The DMA curves indicated that the addition of the organo-Mts produced an increase in the storage modulus in the rubbery plateau region, but a slight decrease in the glass transition temperature of the polystyrene domains. The tensile properties of the organo-Mt/SEBS composites were higher than those of the unmodified Mt/SEBS. D18Mt(100)/SEBS displayed an improved tensile modulus, tear strength and hardness compared to pure SEBS, without sacrificing the tensile strength and elongation at break.\",\"PeriodicalId\":11628,\"journal\":{\"name\":\"E-journal of Soft Materials\",\"volume\":\"13 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-journal of Soft Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2324/EJSM.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Soft Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2324/EJSM.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用熔融共混法制备了粘土/聚苯乙烯-b-聚(乙烯-共丁烯)-b-聚苯乙烯三嵌段共聚物(SEBS)插层复合材料。粘土是一种原始蒙脱土(Mt)和三种有机改性蒙脱土(organo-Mts),具有不同量的二硬脂基二甲基铵(D18)阳离子。D18的用量分别为阳离子交换容量的50%、70%和100%(分别记为D18Mt(50)、D18Mt(70)和D18Mt(100))。采用场发射扫描电镜(FE-SEM)、x射线衍射分析(XRD)对粘土/SEBS复合材料进行了表征。动态力学分析(DMA)和拉伸性能也进行了测试。随着D18添加量的增加,黏土颗粒团聚度减小。D18Mt(100)/SEBS的FE-SEM图像显示,粘土颗粒分散在亚μm级(100 - 500 nm)。XRD谱图表明,SEBS链插入到有机mts的中间层中。DMA曲线表明,有机mts的加入提高了橡胶平台区的储存模量,但降低了聚苯乙烯区域的玻璃化转变温度。有机Mt/SEBS复合材料的拉伸性能高于未改性Mt/SEBS。与纯SEBS相比,D18Mt(100)/SEBS在不牺牲拉伸强度和断裂伸长率的情况下,表现出更高的拉伸模量、撕裂强度和硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Properties of Clay/SEBS Intercalated Composites
Clay/polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymer (SEBS) intercalated composites were prepared by melt-blending. The clays were a pristine montmorillonite (Mt) and three organically modified montmorillonites (organo-Mts) with different amounts of distearyldimethylammonium (D18) cation. The amounts of D18 were 50, 70 and 100% of the cation exchange capacity (denoted as D18Mt(50), D18Mt(70) and D18Mt(100), respectively). The clay/SEBS composites were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD). The dynamic mechanical analysis (DMA) and the tensile properties were also examined.The size of agglomerated clay particles decreased with the increasing amount of D18. The FE-SEM image of D18Mt(100)/SEBS revealed that the clay particles were dispersed at the sub-μm level (100–500 nm). The XRD patterns suggested that the SEBS chains were inserted into the interlayers of the organo-Mts. The DMA curves indicated that the addition of the organo-Mts produced an increase in the storage modulus in the rubbery plateau region, but a slight decrease in the glass transition temperature of the polystyrene domains. The tensile properties of the organo-Mt/SEBS composites were higher than those of the unmodified Mt/SEBS. D18Mt(100)/SEBS displayed an improved tensile modulus, tear strength and hardness compared to pure SEBS, without sacrificing the tensile strength and elongation at break.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信