一般图中EDCS的维护:更简单、密度敏感和具有最坏情况时间边界

F. Grandoni, Chris Schwiegelshohn, Shay Solomon, Amitai Uzrad
{"title":"一般图中EDCS的维护:更简单、密度敏感和具有最坏情况时间边界","authors":"F. Grandoni, Chris Schwiegelshohn, Shay Solomon, Amitai Uzrad","doi":"10.1137/1.9781611977066.2","DOIUrl":null,"url":null,"abstract":"In their breakthrough ICALP'15 paper, Bernstein and Stein presented an algorithm for maintaining a $(3/2+\\epsilon)$-approximate maximum matching in fully dynamic {\\em bipartite} graphs with a {\\em worst-case} update time of $O_\\epsilon(m^{1/4})$; we use the $O_\\epsilon$ notation to suppress the $\\epsilon$-dependence. Their main technical contribution was in presenting a new type of bounded-degree subgraph, which they named an {\\em edge degree constrained subgraph (EDCS)}, which contains a large matching -- of size that is smaller than the maximum matching size of the entire graph by at most a factor of $3/2+\\epsilon$. They demonstrate that the EDCS can be maintained with a worst-case update time of $O_\\epsilon(m^{1/4})$, and their main result follows as a direct corollary. In their followup SODA'16 paper, Bernstein and Stein generalized their result for general graphs, achieving the same update time of $O_\\epsilon(m^{1/4})$, albeit with an amortized rather than worst-case bound. To date, the best {\\em deterministic} worst-case update time bound for {\\em any} better-than-2 approximate matching is $O(\\sqrt{m})$ [Neiman and Solomon, STOC'13], [Gupta and Peng, FOCS'13]; allowing randomization (against an oblivious adversary) one can achieve a much better (still polynomial) update time for approximation slightly below 2 [Behnezhad, Lacki and Mirrokni, SODA'20]. In this work we\\footnote{\\em quasi nanos, gigantium humeris insidentes} simplify the approach of Bernstein and Stein for bipartite graphs, which allows us to generalize it for general graphs while maintaining the same bound of $O_\\epsilon(m^{1/4})$ on the {\\em worst-case} update time. Moreover, our approach is {\\em density-sensitive}: If the {\\em arboricity} of the dynamic graph is bounded by $\\alpha$ at all times, then the worst-case update time of the algorithm is $O_\\epsilon(\\sqrt{\\alpha})$.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"os-32 1","pages":"12-23"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds\",\"authors\":\"F. Grandoni, Chris Schwiegelshohn, Shay Solomon, Amitai Uzrad\",\"doi\":\"10.1137/1.9781611977066.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their breakthrough ICALP'15 paper, Bernstein and Stein presented an algorithm for maintaining a $(3/2+\\\\epsilon)$-approximate maximum matching in fully dynamic {\\\\em bipartite} graphs with a {\\\\em worst-case} update time of $O_\\\\epsilon(m^{1/4})$; we use the $O_\\\\epsilon$ notation to suppress the $\\\\epsilon$-dependence. Their main technical contribution was in presenting a new type of bounded-degree subgraph, which they named an {\\\\em edge degree constrained subgraph (EDCS)}, which contains a large matching -- of size that is smaller than the maximum matching size of the entire graph by at most a factor of $3/2+\\\\epsilon$. They demonstrate that the EDCS can be maintained with a worst-case update time of $O_\\\\epsilon(m^{1/4})$, and their main result follows as a direct corollary. In their followup SODA'16 paper, Bernstein and Stein generalized their result for general graphs, achieving the same update time of $O_\\\\epsilon(m^{1/4})$, albeit with an amortized rather than worst-case bound. To date, the best {\\\\em deterministic} worst-case update time bound for {\\\\em any} better-than-2 approximate matching is $O(\\\\sqrt{m})$ [Neiman and Solomon, STOC'13], [Gupta and Peng, FOCS'13]; allowing randomization (against an oblivious adversary) one can achieve a much better (still polynomial) update time for approximation slightly below 2 [Behnezhad, Lacki and Mirrokni, SODA'20]. In this work we\\\\footnote{\\\\em quasi nanos, gigantium humeris insidentes} simplify the approach of Bernstein and Stein for bipartite graphs, which allows us to generalize it for general graphs while maintaining the same bound of $O_\\\\epsilon(m^{1/4})$ on the {\\\\em worst-case} update time. Moreover, our approach is {\\\\em density-sensitive}: If the {\\\\em arboricity} of the dynamic graph is bounded by $\\\\alpha$ at all times, then the worst-case update time of the algorithm is $O_\\\\epsilon(\\\\sqrt{\\\\alpha})$.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"os-32 1\",\"pages\":\"12-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在他们突破性的ICALP'15论文中,Bernstein和Stein提出了一种在更新时间为$O_\epsilon(m^{1/4})$的全动态{\em二部}图中保持{\em}$(3/2+\epsilon)$ -近似最大匹配的算法;我们使用$O_\epsilon$符号来抑制$\epsilon$依赖性。他们的主要技术贡献是提出了一种新型的有界度子图,他们将其命名为{\em边缘度约束子图(EDCS)},其中包含一个大的匹配大小,其大小最多小于整个图的最大匹配大小$3/2+\epsilon$。他们证明了EDCS可以在最坏情况下更新时间为$O_\epsilon(m^{1/4})$的情况下保持,并且他们的主要结果如下为直接推论。在SODA'16的后续论文中,Bernstein和Stein将他们的结果推广到一般图,实现了相同的更新时间$O_\epsilon(m^{1/4})$,尽管是平摊的而不是最坏情况的边界。迄今为止,{\em任何}优于2的近似匹配的最佳{\em确定性}最坏情况更新时间界限为$O(\sqrt{m})$ [Neiman和Solomon, STOC'13], [Gupta和Peng, FOCS'13];允许随机化(对抗健忘的对手),我们可以获得略低于2的近似更新时间(仍然是多项式)[Behnezhad, Lacki和mirrorkni, SODA'20]。在这项工作中,我们\footnote{\em 准纳米,巨型人体内部}简化了Bernstein和Stein对于二部图的方法,这使我们能够将其推广到一般图,同时在更新时间上保持相同的$O_\epsilon(m^{1/4})$界。此外,我们的方法是{\em密度敏感}的:如果动态图的树{\em性}在任何时候都以{\em}$\alpha$为界,那么算法的最坏情况更新时间为$O_\epsilon(\sqrt{\alpha})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds
In their breakthrough ICALP'15 paper, Bernstein and Stein presented an algorithm for maintaining a $(3/2+\epsilon)$-approximate maximum matching in fully dynamic {\em bipartite} graphs with a {\em worst-case} update time of $O_\epsilon(m^{1/4})$; we use the $O_\epsilon$ notation to suppress the $\epsilon$-dependence. Their main technical contribution was in presenting a new type of bounded-degree subgraph, which they named an {\em edge degree constrained subgraph (EDCS)}, which contains a large matching -- of size that is smaller than the maximum matching size of the entire graph by at most a factor of $3/2+\epsilon$. They demonstrate that the EDCS can be maintained with a worst-case update time of $O_\epsilon(m^{1/4})$, and their main result follows as a direct corollary. In their followup SODA'16 paper, Bernstein and Stein generalized their result for general graphs, achieving the same update time of $O_\epsilon(m^{1/4})$, albeit with an amortized rather than worst-case bound. To date, the best {\em deterministic} worst-case update time bound for {\em any} better-than-2 approximate matching is $O(\sqrt{m})$ [Neiman and Solomon, STOC'13], [Gupta and Peng, FOCS'13]; allowing randomization (against an oblivious adversary) one can achieve a much better (still polynomial) update time for approximation slightly below 2 [Behnezhad, Lacki and Mirrokni, SODA'20]. In this work we\footnote{\em quasi nanos, gigantium humeris insidentes} simplify the approach of Bernstein and Stein for bipartite graphs, which allows us to generalize it for general graphs while maintaining the same bound of $O_\epsilon(m^{1/4})$ on the {\em worst-case} update time. Moreover, our approach is {\em density-sensitive}: If the {\em arboricity} of the dynamic graph is bounded by $\alpha$ at all times, then the worst-case update time of the algorithm is $O_\epsilon(\sqrt{\alpha})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信