刮擦层等离子体的四维漂移动力学模型

L. Perrone, R. Jorge, P. Ricci
{"title":"刮擦层等离子体的四维漂移动力学模型","authors":"L. Perrone, R. Jorge, P. Ricci","doi":"10.1063/5.0024968","DOIUrl":null,"url":null,"abstract":"A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full non-linear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator, as well as Poisson's equation, are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Four-dimensional drift-kinetic model for scrape-off layer plasmas\",\"authors\":\"L. Perrone, R. Jorge, P. Ricci\",\"doi\":\"10.1063/5.0024968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full non-linear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator, as well as Poisson's equation, are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0024968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0024968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

建立了一个能够描述托卡马克器件在任意碰撞时刮擦层区域的四维等离子体模型。该模型的基础是由一个漂移动力学方程提供的,该方程保留了完整的非线性库仑碰撞算子,并描述了任意远离平衡分布函数。通过将分布函数对垂直速度的依赖关系以拉盖尔多项式的形式展开,并对垂直速度进行积分,得到了分布函数展开系数的四维力矩方程。库仑碰撞算符和泊松方程都是用分布函数的垂直速度矩来明确地计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-dimensional drift-kinetic model for scrape-off layer plasmas
A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full non-linear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator, as well as Poisson's equation, are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信