i_2 -相对一致收敛和Korovkin型近似

IF 0.3 Q4 MATHEMATICS
S. Yildiz
{"title":"i_2 -相对一致收敛和Korovkin型近似","authors":"S. Yildiz","doi":"10.12697/acutm.2021.25.13","DOIUrl":null,"url":null,"abstract":"In the present paper, an interesting type of convergence named ideal relative uniform convergence for double sequences of functions has been introduced for the first time. Then, the Korovkin type approximation theorem via this new type of convergence has been proved. An example to show that the new type of convergence is stronger than the convergence considered before has been given. Finally, the rate of  I2-relative uniform convergence has been computed.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"34 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I_2-Relative uniform convergence and Korovkin type approximation\",\"authors\":\"S. Yildiz\",\"doi\":\"10.12697/acutm.2021.25.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, an interesting type of convergence named ideal relative uniform convergence for double sequences of functions has been introduced for the first time. Then, the Korovkin type approximation theorem via this new type of convergence has been proved. An example to show that the new type of convergence is stronger than the convergence considered before has been given. Finally, the rate of  I2-relative uniform convergence has been computed.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次引入了函数二重序列的一种有趣的收敛类型——理想相对一致收敛。然后,利用这种新的收敛类型证明了Korovkin型近似定理。最后给出了一个实例,证明了这种收敛性比以前所考虑的收敛性更强。最后,计算了i2相对一致收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I_2-Relative uniform convergence and Korovkin type approximation
In the present paper, an interesting type of convergence named ideal relative uniform convergence for double sequences of functions has been introduced for the first time. Then, the Korovkin type approximation theorem via this new type of convergence has been proved. An example to show that the new type of convergence is stronger than the convergence considered before has been given. Finally, the rate of  I2-relative uniform convergence has been computed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信