局部拟凸收敛群的对偶性

IF 0.6 Q3 MATHEMATICS
Pranav Sharma
{"title":"局部拟凸收敛群的对偶性","authors":"Pranav Sharma","doi":"10.4995/AGT.2021.14585","DOIUrl":null,"url":null,"abstract":"In the realm of the convergence spaces, the generalisation of topological groups is the convergence groups, and the corresponding extension of the Pontryagin duality is the continuous duality. We prove that local quasi-convexity is a necessary condition for a convergence group to be creflexive. Further, we prove that every character group of a convergence group is locally quasi-convex. 2010 MSC: 43A40; 54A20; 54H11.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"31 1","pages":"193"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality of locally quasi-convex convergence groups\",\"authors\":\"Pranav Sharma\",\"doi\":\"10.4995/AGT.2021.14585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of the convergence spaces, the generalisation of topological groups is the convergence groups, and the corresponding extension of the Pontryagin duality is the continuous duality. We prove that local quasi-convexity is a necessary condition for a convergence group to be creflexive. Further, we prove that every character group of a convergence group is locally quasi-convex. 2010 MSC: 43A40; 54A20; 54H11.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"31 1\",\"pages\":\"193\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/AGT.2021.14585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/AGT.2021.14585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在收敛空间中,拓扑群的推广就是收敛群,相应的庞特里亚金对偶的推广就是连续对偶。证明了局部拟凸性是收敛群具有可挠性的必要条件。进一步证明了收敛群的每个特征群都是局部拟凸的。2010 msc: 43a40;54岁的样子;54 h11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality of locally quasi-convex convergence groups
In the realm of the convergence spaces, the generalisation of topological groups is the convergence groups, and the corresponding extension of the Pontryagin duality is the continuous duality. We prove that local quasi-convexity is a necessary condition for a convergence group to be creflexive. Further, we prove that every character group of a convergence group is locally quasi-convex. 2010 MSC: 43A40; 54A20; 54H11.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信