在降阶H∞控制下求解BMI的非凸谱算法

Ye Shi, Hoang Duong Tuan, Steven W. Su
{"title":"在降阶H∞控制下求解BMI的非凸谱算法","authors":"Ye Shi, Hoang Duong Tuan, Steven W. Su","doi":"10.1109/ICCSCE.2016.7893591","DOIUrl":null,"url":null,"abstract":"The design of reduced-order H∞ control can be transformed into an optimization problem with bilinear matrix inequality (BMI) constraints, which is an NP-hard problem. We propose a method to equivalently transfer the BMI constraint into a convex LMI constraint plus a matrix-rank constraint. The optimization with matrix-rank constraint is iteratively solved by a sequence of semidefinite programming (SDP) problems. Simulations on several benchmark systems show that our algorithm is practical and efficient.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"23 1","pages":"316-319"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconvex spectral algorithm for solving BMI on the reduced order H∞ control\",\"authors\":\"Ye Shi, Hoang Duong Tuan, Steven W. Su\",\"doi\":\"10.1109/ICCSCE.2016.7893591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of reduced-order H∞ control can be transformed into an optimization problem with bilinear matrix inequality (BMI) constraints, which is an NP-hard problem. We propose a method to equivalently transfer the BMI constraint into a convex LMI constraint plus a matrix-rank constraint. The optimization with matrix-rank constraint is iteratively solved by a sequence of semidefinite programming (SDP) problems. Simulations on several benchmark systems show that our algorithm is practical and efficient.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"23 1\",\"pages\":\"316-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降阶H∞控制的设计可以转化为一个具有双线性矩阵不等式(BMI)约束的优化问题,这是一个np困难问题。我们提出了一种将BMI约束等效地转换为凸LMI约束加矩阵秩约束的方法。用一组半定规划(SDP)问题迭代求解矩阵秩约束下的优化问题。在多个基准系统上的仿真结果表明了该算法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconvex spectral algorithm for solving BMI on the reduced order H∞ control
The design of reduced-order H∞ control can be transformed into an optimization problem with bilinear matrix inequality (BMI) constraints, which is an NP-hard problem. We propose a method to equivalently transfer the BMI constraint into a convex LMI constraint plus a matrix-rank constraint. The optimization with matrix-rank constraint is iteratively solved by a sequence of semidefinite programming (SDP) problems. Simulations on several benchmark systems show that our algorithm is practical and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信